The statistical crisis in science
Andrew Gelman, professor of statistics and political science
Columbia University

Oct. 25, 2017, 3:30 p.m., Physics/Astronomy Auditorium (PAA), A102

Abstract

Top journals routinely publish ridiculous, scientifically implausible claims, justified based on “p < 0.05.” And this in turn calls into question all sorts of more plausible, but not necessarily true, claims, that are supported by this same sort of evidence. To put it another way: we can all laugh at studies of ESP, or ovulation and voting, but what about MRI studies of political attitudes, or stereotype threat, or, for that matter, the latest potential cancer cure? If we can’t trust p-values, does experimental science involving human variation just have to start over? And what do we do in fields such as political science and economics, where preregistered replication can be difficult or impossible? Can Bayesian inference supply a solution? Maybe. These are not easy problems, but they’re important problems.

Bio

A photo of Andrew GelmanAndrew Gelman is a professor of statistics and political science and director of the Applied Statistics Center at Columbia University. He has received the Outstanding Statistical Application award from the American Statistical Association, the award for best article published in the American Political Science Review, and the Council of Presidents of Statistical Societies award for outstanding contributions by a person under the age of 40.

His books include Bayesian Data Analysis (with John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Don Rubin), Teaching Statistics: A Bag of Tricks (with Deb Nolan), Data Analysis Using Regression and Multilevel/Hierarchical Models (with Jennifer Hill), Red State, Blue State, Rich State, Poor State: Why Americans Vote the Way They Do (with David Park, Boris Shor, and Jeronimo Cortina), and A Quantitative Tour of the Social Sciences (co-edited with Jeronimo Cortina).

Andrew has done research on a wide range of topics, including: why it is rational to vote; why campaign polls are so variable when elections are so predictable; why redistricting is good for democracy; reversals of death sentences; police stops in New York City, the statistical challenges of estimating small effects; the probability that your vote will be decisive; seats and votes in Congress; social network structure; arsenic in Bangladesh; radon in your basement; toxicology; medical imaging; and methods in surveys, experimental design, statistical inference, computation, and graphics.