Identifying and Estimating Causal Effects with Incomplete Causal Information

Emilija Perković University of Washington

some joint work with F. Richard Guo, Andrea Rotnitzky, Marloes Maathuis, Leonard Henckel

Stanford Marshmallow Experiment

"An amazing—eye-opening, transformative, riveting—book from one of the greatest psychologists of our time." —CAROL S. DWECK, PhD, AUTHOR OF *MINDSET*

Winner Books for a THE Better Life Award MARSHMALLOW TEST WHY SELF-CONTROL IS THE ENGINE OF SUCCESS

WALTER MISCHEL

?

E)BE D	
IL*	

How having self-control as a kid can affect your health later

3	υ	s	11	ł	ε		s	
I	N	S	ш	D	E	F	ŧ	

GL

How Self Control Leads To Success In Life, According To This Legendary Stanford Psychologist

Drake Baer	Oct 21, 2014, 6:16 PM
------------	-----------------------

6

Health, mind and body books The Marshmallow Test review - if you can resist, you will go far

?

Should we train the delay of gratification?

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link?
- Do we know all relationships between these variables?

Causal Relationships

Socio Economic Status

Word Completion

Memorizing Sentences

Sibling Relationship Happiness

Causal Relationships

Causal Directed Acyclic Graph (DAG) \mathcal{D} .

Interventional DAG

- Randomized experiment, e.g: each participant is randomly assigned to treatment or control.
- Any change in response due to a change in treatment goes through *causal paths*.
- $do(x_A)$: an intervention that sets variable X_A to x_A .
- $f(x_Y|do(x_A)) \rightarrow \text{Causal Effect}$

Observational Causal DAG

- $f(x_{\mathbf{V}}) \rightarrow \text{Observational Data}$
- Access to: $f(x_Y|x_A), f(x_Y), \dots$ **Issues**: 1. In general, $f(x_Y|do(x_A)) \neq f(x_Y|x_A)$.

Observational Causal DAG

- $f(x_V) \rightarrow \text{Observational Data}$
- Access to: $f(x_Y|x_A), f(x_Y), \ldots$
- **Issues**: 1. In general, $f(x_Y|do(x_A)) \neq f(x_Y|x_A)$. 2. We may not know the full graph.

Causal Directed Acyclic Graph (DAG) \mathcal{D} .

Partially Directed Acyclic Graph (PDAG).

• Expert knowledge of causal relations, previous experiments, model restrictions...

Maximally oriented Partially Directed Acyclic Graph (MPDAG).

Expert knowledge of causal relations, previous experiments, model restrictions...

Causal Framework

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.
- 1) Can we uniquely identify the causal effect or a set of possible effects?
- 2) How strong is this causal relationship?
 - How to construct an estimator?
 - What estimator is optimal in terms of minimal variance?

My Work

- Perković, Textor, Kalisch and Maathuis (2015). A Complete Generalized Adjustment Criterion. UAI 2015.
- Perković, Kalisch and Maathuis (2017). Interpreting and Using CPDAGs with Background Knowledge. UAI 2017.
- Perković, Textor, Kalisch and Maathuis (2018). Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs. JMLR.
- Perković (2020). Identifying total causal effects in MPDAGs. UAI 2020.
- Guo and Perković (2021). Minimal enumeration of all possible total effects in a Markov equivalence class. *AISTATS 2021*.
- Guo and Perković (2022). Efficient Least Squares for Estimating Total Effects under Linearity and Causal Sufficiency. JMLR.
- Henckel, Perković, and Maathuis (2022). Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Structural Equation Models. *JRSS:B*.
- Guo, Perković, and Rotnitzky (2022). Variable elimination, graph reduction, and efficient g-formula. *Biometrika*.

My Work

- Perković, Textor, Kalisch and Maathuis (2015). A Complete Generalized Adjustment Criterion. UAI 2015.
- Perković, Kalisch and Maathuis (2017). Interpreting and Using CPDAGs with Background Knowledge. UAI 2017.
- Perković, Textor, Kalisch and Maathuis (2018). Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs. JMLR.
- Perković (2020). Identifying total causal effects in MPDAGs. UAI 2020.
- Guo and Perković (2021). Minimal enumeration of all possible total effects in a Markov equivalence class. *AISTATS 2021*.
- Guo and Perković (2022). Efficient Least Squares for Estimating Total Effects under Linearity and Causal Sufficiency. JMLR.
- Henckel, Perković, and Maathuis (2022). Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Structural Equation Models. *JRSS:B*.
- Guo, Perković, and Rotnitzky (2022). Variable elimination, graph reduction, and efficient g-formula. *Biometrika*.

DAGs and Distributions

- Observational density $f(x_{\mathbf{V}})$
- Interventional density $f(x_V | do(x_A))$.
- A DAG \mathcal{D} is causal if for all observational and interventional densities:

 $f(x_{\mathbf{V}}) = \prod f(x_j | x_{pa(j)})$ and $f(x_{\mathbf{V}} | do(x_A)) = \prod f(x_j | x_{pa(j)})$ I∈V $J \in \mathbf{V} \setminus \{A\}$ В В

 $f(x_B, x_A, x_Y) = f(x_Y | x_B, x_A) f(x_A | x_B) f(x_B) \qquad \qquad f(x_B, x_Y | do(x_A)) = f(x_Y | x_B, x_A) f(x_B)$

How to define a causal effect?

Total causal effect

• Total causal effect, τ_{AY} , always defined as some function of $f(x_Y|do(X_A = x_A))$, E.g.

$$\tau_{AY} = \mathbb{E}[X_Y | do(X_A = x_A + 1)] - \mathbb{E}[X_Y | do(X_A = x_A)]$$

Identifiability

• A total causal effect is identifiable from observational data and a causal graph if

 $f(x_Y|do(x_A))$ can be expressed as a function of $f(x_v)$.

How to define a causal effect?

Total causal effect

• Total causal effect, τ_{AY} , always defined as some function of $f(x_Y|do(X_A = x_A))$, E.g.

$$\tau_{AY} = \mathbb{E}[X_Y | do(X_A = x_A + 1)] - \mathbb{E}[X_Y | do(X_A = x_A)]$$

Identifiability

- A total causal effect is identifiable from observational data and a causal graph if $f(x_Y|do(x_A))$ can be expressed as a function of $f(x_y)$.
- Given the causal DAG, every total causal effect is identifiable.

$$f(x_Y|do(x_A)) = \int f(x_B, x_Y|do(x_A))dx_B$$
$$= \int f(x_Y|x_B, x_A)f(x_B)dx_B$$

G-formula (Robins '86, Pearl '93)

• A causal effect is **not always** identifiable from obs. data and a causal MPDAG.

Graphical criterion	DAG	CPDAG	MPDAG
Adjustment (Pearl '93, Shpitser et al '10)	\Rightarrow		
Generalized Adjustment (Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula, Truncated Factorization (Robins '86, Pearl '93)	\Leftrightarrow		
Generalized G-formula (Perković '20)	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

 \Rightarrow - sufficient for identification, \Leftrightarrow - necessary and sufficient for identification

• Can we uniquely identify the effect?

Theorem (Perković, 2020)

The total causal effect of X_A on X_Y is identifiable in MPDAG \mathcal{G} if and only if **all possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

• Can we uniquely identify the effect?

Theorem (Perković, 2020)

The total causal effect of X_A on X_Y is identifiable in MPDAG \mathcal{G} if and only if **all possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

• Can we uniquely identify the effect? No.

Theorem (Perković, 2020)

The total causal effect of X_A on X_Y is identifiable in MPDAG \mathcal{G} if and only if **all possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

- Can we uniquely identify the effect? No.
- Can we identify the set of possible causal effects? Yes.

Set Identification

We want to have a list of possible total effects (**set identification**). Partition of the equivalence class of DAGs such that **set identification** is

1) **complete**: $f(x_Y | do(x_A))$ is identifiable under each partition

2) **minimal**: $\mathbb{E}[X_Y | do(x_A)]$ are distinct functionals of x_A between partitions!

Set Identification

We want to have a list of possible total effects (**set identification**).

Partition of the equivalence class of DAGs such that **set identification** is

- complete: f(x_Y|do(x_A)) is identifiable under each partition We could enumerate over
 - all DAGs (Maathuis et al, '09)
 - the valid parent sets of A (Maathuis et al, '09, Nandy et al, '17, Perković et al, '17, Witte et al, '20, Fang and He, '20)
 - orientation of A- on possibly causal paths to Y (Liu et al, '20)

2) **minimal**: $\mathbb{E}[X_Y | do(x_A)]$ are distinct functionals of x_A between partitions!

Theorem (Perković, 2020)

The total causal effect of X_A on X_Y is identifiable in MPDAG \mathcal{G} if and only if **all possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

Set Identification

We want to have a list of possible total effects (**set identification**).

Partition of the equivalence class of DAGs such that **set identification** is

- complete: f(x_Y|do(x_A)) is identifiable under each partition We could enumerate over
 - all DAGs (Maathuis et al, '09)
 - the valid parent sets of A (Maathuis et al, '09, Nandy et al, '17, Perković et al, '17, Witte et al, '20, Fang and He, '20)
 - orientation of A- on possibly causal paths to Y (Liu et al, '20)

2) **minimal**: $\mathbb{E}[X_Y | do(x_A)]$ are distinct functionals of x_A between partitions!

• None of the above are minimal. Why is Liu et al, 20 not minimal?

Theorem (Perković, 2020)

The total causal effect of X_A on X_Y is identifiable in MPDAG \mathcal{G} if and only if **all possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

Optimal enumeration

Theorem (Perković, 2020)

The total causal effect of X_A on X_Y is identifiable in MPDAG \mathcal{G} if and only if **all possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

```
Input: MPDAG \mathcal{G}, A, Y \in \mathbf{V} and A \neq Y.
```

Algorithm FirstTry

- 1. Pick $A V_1$ such that there is a possibly causal path A, V_1, \ldots, Y .
- 2. $\mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A \rightarrow V_1), \mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A \leftarrow V_1)$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until $f(x_Y | do(x_A))$ is identified

MPDAG(G, R) adds orientations R to G and completes orientation rules.

Enumeration

Omitted D and Y for simplicity.

Enumeration

Omitted D and Y for simplicity.

Ε

Β -

Α

С

Ε

В -

С

Α

 $A \xrightarrow{E} B \xrightarrow{E} C$

<-- в --- с

Α

Optimal Enumeration

Orienting A - E then A - C ...

• A - C should be oriented first because the *status* of A - B - C - Y depends on A - C - Y.

Optimal Enumeration

Algorithm IDGraphs, (Guo & Perković, 2021)

- 1. Pick $A V_1$ such that A, V_1, \ldots, Y is a shortest possibly causal path from A to Y.
- 2. $\mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A \rightarrow V_1), \mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A \leftarrow V_1)$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until identified

Theorem (Guo & Perković, 2021)

 $(\mathcal{G}_1, \ldots, \mathcal{G}_m)$ output by the algorithm is **complete** and **minimal**.

- A small change makes a big difference!
- Have a version for the multiple exposure case as well.
- In R package eff2.

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.
- Can we uniquely identify the causal effect or a set of possible effects?
 Yes (Perković 2020, Guo & Perković, 2021).
- 2) How strong is this causal relationship?
 - How to construct an estimator?
 - What estimator is optimal in terms of minimal variance?

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.
- Data is generated by a linear structural causal model (SCM).
- Can we uniquely identify the causal effect or a set of possible effects?
 Yes (Perković 2020, Guo & Perković, 2021).
- 2) How strong is this causal relationship?
 - How to construct an estimator?
 - What estimator is optimal in terms of minimal variance?

Causal DAG, Linear Structural Causal Model (SCM)

• Data is generated by:

$$\begin{split} & X_E = \epsilon_E \\ & X_A = \gamma_{EA} X_E + \epsilon_A \\ & X_B = \gamma_{AB} X_A + \epsilon_B \\ & X_C = \gamma_{AC} X_A + \gamma_{BC} X_B + \epsilon_C \\ & X_D = \gamma_{AD} X_A + \gamma_{CD} X_C + \epsilon_D \\ & X_Y = \gamma_{BY} X_B + \gamma_{CY} X_C + \gamma_{EY} X_E + \epsilon_Y \\ & \mathbb{E} \epsilon = 0, \quad 0 < \text{var} \epsilon_i < \infty, \quad \epsilon_i \text{ are mutually independent,} \end{split}$$

Causal DAG, Linear Structural Causal Model (SCM)

Data is generated by:

$$\begin{split} & X = \Gamma^{\mathsf{T}} X + \epsilon, \qquad \Gamma = (\gamma_{ij}), \quad I \not\Rightarrow J \Rightarrow \gamma_{ij} = 0, \\ & \mathbb{E} \epsilon = 0, \quad 0 < \mathsf{var} \epsilon_i < \infty, \quad \epsilon_i \text{ are mutually independent,} \\ & \Gamma \text{ is the weighted adjacency matrix.} \end{split}$$

Causal DAG, Linear Structural Causal Model (SCM)

Data is generated by:

$$\begin{split} & X = \Gamma^{\mathsf{T}} X + \epsilon, \qquad \Gamma = (\gamma_{ij}), \quad I \not\Rightarrow J \Rightarrow \gamma_{ij} = 0, \\ & \mathbb{E} \epsilon = 0, \quad 0 < \operatorname{var} \epsilon_i < \infty, \quad \epsilon_i \text{ are mutually independent,} \\ & \Gamma \text{ is the weighted adjacency matrix.} \end{split}$$

• By the path tracing rules (Wright, 1934) and the G-formula:

 $\tau_{AY} = \cdots = \gamma_{ac}\gamma_{cy} + \gamma_{ab}\gamma_{bc}\gamma_{cy}.$

• Data is generated by

$$\begin{split} & X = \Gamma^{\mathsf{T}} X + \epsilon, \qquad \Gamma = (\gamma_{ij}), \quad I \not\to J \Rightarrow \gamma_{ij} = 0, \\ & \mathbb{E} \, \epsilon = 0, \quad 0 < \text{var} \, \epsilon_l < \infty, \quad \epsilon_l \text{ are mutually independent.} \end{split}$$

• Problem: Γ is not uniquely identified.

$$\mathbf{B_1} = \{ \mathbf{E} \}, \ \mathbf{B_2} = \{ A \}, \ \mathbf{B_3} = \{ B, C, D \}, \ \mathbf{B_4} = \{ \mathbf{Y} \}.$$

$$\mathbf{B_1} = \{E\}, \ \mathbf{B_2} = \{A\}, \ \mathbf{B_3} = \{B, C, D\}, \ \mathbf{B_4} = \{Y\}.$$

- 1. The "between bucket" causal effects are identifiable. (Perković 2020).
- Restrictive property: Each node in a bucket has the same out-of-bucket parents (Guo and Perković, 2022).
- We use this to reparametrize the SCM.

$$\mathbf{B_1} = \{E\}, \ \mathbf{B_2} = \{A\}, \ \mathbf{B_3} = \{B, C, D\}, \ \mathbf{B_4} = \{Y\}.$$

$$X_{\mathbf{B}_{\mathbf{i}}} = \Gamma_{\mathrm{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G}),\mathbf{B}_{\mathbf{i}}}^{\mathsf{T}} X_{\mathrm{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G})} + \Gamma_{\mathbf{B}_{\mathbf{i}}}^{\mathsf{T}} X_{\mathbf{B}_{\mathbf{i}}} + \epsilon_{\mathbf{B}_{\mathbf{i}}},$$

$$\mathbf{B_1} = \{E\}, \ \mathbf{B_2} = \{A\}, \ \mathbf{B_3} = \{B, C, D\}, \ \mathbf{B_4} = \{Y\}.$$

$$\begin{split} & X_{\mathbf{B}_{\mathbf{i}}} = \Gamma_{\mathsf{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G}),\mathbf{B}_{\mathbf{i}}}^{\mathsf{T}} X_{\mathsf{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G})} + \Gamma_{\mathbf{B}_{\mathbf{i}}}^{\mathsf{T}} X_{\mathbf{B}_{\mathbf{i}}} + \epsilon_{\mathbf{B}_{\mathbf{i}}}, \\ & X_{\mathbf{B}_{\mathbf{i}}} = \left(I - \Gamma_{\mathbf{B}_{\mathbf{i}}}\right)^{-\mathsf{T}} \Gamma_{\mathsf{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G}),\mathbf{B}_{\mathbf{i}}}^{\mathsf{T}} X_{\mathsf{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G})} + \left(I - \Gamma_{\mathbf{B}_{\mathbf{i}}}\right)^{-\mathsf{T}} \epsilon_{\mathbf{B}_{\mathbf{i}}} \\ & = \Lambda_{\mathsf{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G}),\mathbf{B}_{\mathbf{i}}}^{\mathsf{T}} X_{\mathsf{pa}(\mathbf{B}_{\mathbf{i}},\mathcal{G})} + \epsilon_{\mathbf{B}_{\mathbf{i}}}, \end{split}$$

• Idea: Consider buckets (maximal undirected connected components) in G:

$$\mathbf{B_1} = \{E\}, \ \mathbf{B_2} = \{A\}, \ \mathbf{B_3} = \{B, C, D\}, \ \mathbf{B_4} = \{Y\}.$$

$$\begin{split} X_{\mathbf{B}_{i}} &= \Gamma_{\mathsf{pa}(\mathbf{B}_{i},\mathcal{G}),\mathbf{B}_{i}}^{\mathsf{T}} X_{\mathsf{pa}(\mathbf{B}_{i},\mathcal{G})} + \Gamma_{\mathbf{B}_{i}}^{\mathsf{T}} X_{\mathbf{B}_{i}} + \epsilon_{\mathbf{B}_{i}}, \\ X_{\mathbf{B}_{i}} &= \left(I - \Gamma_{\mathbf{B}_{i}}\right)^{-\mathsf{T}} \Gamma_{\mathsf{pa}(\mathbf{B}_{i},\mathcal{G}),\mathbf{B}_{i}}^{\mathsf{T}} X_{\mathsf{pa}(\mathbf{B}_{i},\mathcal{G})} + \left(I - \Gamma_{\mathbf{B}_{i}}\right)^{-\mathsf{T}} \epsilon_{\mathbf{B}_{i}} \\ &= \Lambda_{\mathsf{pa}(\mathbf{B}_{i},\mathcal{G}),\mathbf{B}_{i}}^{\mathsf{T}} X_{\mathsf{pa}(\mathbf{B}_{i},\mathcal{G})} + \epsilon_{\mathbf{B}_{i}}, \end{split}$$

• Suggests re-writing τ_{AY} using elements of Λ and estimating $\Lambda_{pa(\mathbf{B}_{i},\mathcal{G}),\mathbf{B}_{i}}$ using least squares coefficients from $\mathbf{B}_{i} \sim pa(\mathbf{B}_{i},\mathcal{G}) \rightarrow \mathcal{G}$ -regression.

Efficiency

Theorem (*G*-regression, Guo and Perković, 2022)

Suppose τ_{AY} is identifiable given MPDAG ${\cal G}$ and let

 $\hat{\tau}_{AY}^{\mathcal{G}}$ be the \mathcal{G} -regression estimator.

Then for any consistent estimator $\hat{\tau}_{AY}$ of τ_{AY} such that

 $\hat{\tau}_{\rm AY}$ is a differentiable function of the sample covariance

it holds that

 $\operatorname{avar}\left(\hat{\tau}_{\mathsf{A}\mathsf{Y}}\right) \geq \operatorname{avar}\left(\hat{\tau}_{\mathsf{A}\mathsf{Y}}^{\mathcal{G}}\right),$

avar - asymptotic variance.

This includes estimators based on:

- covariate adjustment (Henckel et al, 2022, Witte et al, 2020),
- recursive regressions (Nandy et al, 2017, Gupta et al, 2020),
- modified Cholesky decomposition (Nandy et al, 2017).

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.
- Data is generated by a linear structural causal model (SCM).
- Can we uniquely identify the causal effect or a set of possible effects? Yes (Perković 2020, Guo & Perković, 2021).

2) How strong is this causal relationship?

- How to construct an estimator? Generalized G-Formula (Perković 2020, Guo & Perković, 2022, Guo, Perković, & Rotnitzky (2022)).
- What estimator is optimal in terms of minimal variance? *G*-regression (Guo & Perković, 2022).

Causal Framework

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.

Causal Framework

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? No. \rightarrow Many open problems.
- Do we know all relationships between these variables? No.

Causal Framework

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? No. \rightarrow Many open problems.
- Do we know all relationships between these variables? No.

Thanks!

Marshmallow Test Revisited

• Watts, T.W., Duncan, G.J., and Quan, H. (2018) in Psychological science.

Marshmallow Test Revisited

• Watts, T.W., Duncan, G.J., and Quan, H. (2018) in Psychological science.

 \rightarrow "...Associations between delay time and measures of behavioral outcomes at age 15 were much smaller and rarely statistically significant."

Marshmallow Test Re-Revisited

- Doebel, S., Michaelson, L.E., and Munakata, Y. (2019), Psychological Science.
- Falk, A., Kosse, F., and Pinger, P. (2019), Psychological Science.
- Watts, T.W., and Duncan, G.J. (2019), Psychological Science.
- Benjamin, D.J., Laibson D., Mischel, W., Peake, P.K., Shoda, Y., Wellsjo, A.S., and Wilson N.W. (2020), Journal of Economic Behavior & Organization

Simulation results

	A_1 on r (C)
true effect	3
true poss. effects	$\{3, 2, 1.8, 0\}$
our method	$\{2.9, 2.1, 1.9, 0\}$
IDA (optimal)	$\{2.9, (2.1)^2, 1.9, 0\}$
IDA (local, collapsible)	$\{2.9, 2.1, 2.2, 1.9, 0$
joint-IDA	_

- Generated with a linear structural causal model with Gaussian errors and n = 100.
- $(a)^b$ denotes that *a* appears with multiplicity *b*.

Simulation results

- Generated with a linear structural causal model with Gaussian errors and n = 100.
- $(a)^{b}$ denotes that *a* appears with multiplicity *b*.

Simulation: size of possible effects

colour

- IDA (local and optimal)
- IDA (local)
- our method and IDA (optimal)

shape

- distinct values
- multiset

Simulation: size of possible effects

Overview

	Comp. Cost	A = 1	A > 1	Duplicates
Naive - Enumerate all DAGs:				
global IDA (Maathuis et al, 2009)	$\mathcal{O}(V !)$	\checkmark	-	Yes
global joint IDA (Nandy et al, 2017)	$\mathcal{O}(V !)$	\checkmark	\checkmark	Yes
Enumerate valid parent sets of A:				
IOCAI IDA (Maathuis et al, 2009, Fang & He, 2020)	$\mathcal{O}(2^{l(\mathcal{G})})$	\checkmark		Yes
semi-local IDA, joint IDA (P. et al, 2017, Nandy et al, 2017)	$\mathcal{O}(2^{l(\mathcal{G})} poly(V))$	\checkmark	\checkmark	Yes
optimal IDA (Witte et al, 2020)	$\mathcal{O}(2^{l(\mathcal{G})} poly(V))$	\checkmark	\sim	No
Enum. A- on poss. causal paths to Y:				
collapsible IDA (Liu et. al, 2020)	$\mathcal{O}((V + E)2^{r(\mathcal{G})})$	\checkmark	-	Yes
Recursively enum. over shortest problem paths				

- *I*(*G*) # of undirected edges connected to *A*
- $r(\mathcal{G})$ # of edges A- on possibly causal paths to Y, $r(\mathcal{G}) \leq l(\mathcal{G})$

Overview

	Comp. Cost	A = 1	A > 1	Duplicates
Naive - Enumerate all DAGs:				
global IDA (Maathuis et al, 2009)	$\mathcal{O}(V !)$	\checkmark		Yes
global joint IDA (Nandy et al, 2017)	$\mathcal{O}(V !)$	\checkmark	\checkmark	Yes
Enumerate valid parent sets of A:				
IOCAI IDA (Maathuis et al, 2009, Fang & He, 2020)	$\mathcal{O}(2^{l(\mathcal{G})})$	\checkmark		Yes
semi-local IDA, joint IDA (P. et al, 2017, Nandy et al, 2017)	$\mathcal{O}(2^{l(\mathcal{G})} poly(V))$	\checkmark	\checkmark	Yes
optimal IDA (Witte et al, 2020)	$\mathcal{O}(2^{l(\mathcal{G})} poly(V))$	\checkmark	\sim	No
Enum. A- on poss. causal paths to Y:				
collapsible IDA (Liu et. al, 2020)	$\mathcal{O}((V + E)2^{r(\mathcal{G})})$	\checkmark		Yes
Recursively enum. over shortest problem paths				
IDGraphs (Guo & Perković)	$\mathcal{O}(2^{m(\mathcal{G})}poly(V))$	\checkmark	\checkmark	No

- *I*(*G*) # of undirected edges connected to *A*
- $r(\mathcal{G})$ # of edges A- on possibly causal paths to Y, $r(\mathcal{G}) \leq l(\mathcal{G})$
- $m(\mathcal{G})$ # of recursively id. edges A on proper possibly causal paths to $Y, m(\mathcal{G}) \leq r(\mathcal{G})$

Average runtime simulation comparison

Generalized G-Formula and *G*-Regression

• Generalized G-Formula and *G*-regression:

$$\mathbb{E}[X_{Y}|\mathrm{do}(x_{A})] = \int \mathbb{E}[X_{Y}|x_{B}, x_{C}, x_{E}]f(x_{B}, x_{C}|x_{A})f(x_{E})dx_{B}dx_{C}dx_{E}$$

Same Generalized G-Formula and $\mathcal{G}\text{-}Regression$

• The generalized G-formula is the same in the above MPDAG.

$$\mathbb{E}[X_Y|\mathrm{do}(x_A)] = \int \mathbb{E}[X_Y|x_B, x_C, x_E]f(x_B, x_C|x_A)f(x_E)dx_Bdx_Cdx_E$$

Same Generalized G-Formula and *G*-Regression

• As well as in the above MPDAG.

$$\mathbb{E}[X_{Y}|\mathrm{do}(x_{A})] = \int \mathbb{E}[X_{Y}|x_{B}, x_{C}, x_{E}]f(x_{B}, x_{C}|x_{A})f(x_{E})dx_{B}dx_{C}dx_{E}$$
Same Generalized G-Formula and *G*-Regression

• As well as in the above MPDAG.

$$\mathbb{E}[X_{Y}|do(x_{A})] = \int \mathbb{E}[X_{Y}|x_{B}, x_{C}, x_{E}]f(x_{B}, x_{C}|x_{A})f(x_{E})dx_{B}dx_{C}dx_{E}$$

- Indicating that: measurement of all variables not needed for efficient causal estimation.
- We explore these implications in Guo, Perković and Rotnitzky (2022). Opportunities for future work.

Block-recursive reparametrization

Proposition (Block-recursive form, Guo and Perković, 2022)

Let $\bm{B_1},\ldots,\bm{B_K}$ be the ordered bucket decomposition of \bm{V} in MPDAG $\mathcal{G}.$ Then

$$\begin{split} & X = \Lambda^{\mathsf{T}} X + \varepsilon, \qquad \Lambda = (\lambda_{ij}), \ J \in \mathbf{B}_{\mathbf{k}}, \ I \notin \mathsf{pa}(\mathbf{B}_{\mathbf{k}}, \mathcal{G}) \quad \Rightarrow \quad \lambda_{ij} = 0, \\ & \mathbb{E} \, \varepsilon = 0, \quad \mathbb{E} \, \varepsilon_{\mathbf{B}_{\mathbf{k}}} \varepsilon_{\mathbf{B}_{\mathbf{k}}}^{\mathsf{T}} \succ \mathbf{0}, \quad \varepsilon_{\mathbf{B}_{\mathbf{k}}} \text{ mutually independent,} \end{split}$$

Two nice things happen under this re-parametrization:

• For $\mathbf{S} = An(Y, \mathcal{G}_{\mathbf{V} \setminus \{A\}})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,\mathbf{S}} \left[\left(I - \Lambda_{\mathbf{S},\mathbf{S}} \right)^{-1} \right]_{\mathbf{S},Y}$$

The bucket-wise error distribution is a nuisance.

• Under Gaussian errors, the MLE for each $\Lambda_{pa(\mathbf{B}_i,\mathcal{G}),\mathbf{B}_i}$ corresponds to the least squares coefficients from $\mathbf{B}_i \sim pa(\mathbf{B}_i,\mathcal{G})$. $\rightarrow \mathcal{G}$ -regression.

Efficiency

Theorem (*G*-regression, Guo and Perković, 2022)

If τ_{AY} is identifiable given MPDAG G, the *G*-regression estimator is defined as:

$$\hat{ au}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,\mathbf{S}}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{\mathbf{S},\mathbf{S}}^{\mathcal{G}})^{-1}
ight]_{\mathbf{S},Y}$$

where $\mathbf{S} = An(Y, \mathcal{G}_{\mathbf{V} \setminus \{A\}})$, and $\hat{\Lambda}^{\mathcal{G}}$ is matrix consisting of least squares coefficients for each "bucket" regression.

Then for any consistent estimator $\hat{\tau}_{AY}$ of τ_{AY} such that $\hat{\tau}_{AY}$ is a differentiable function of the sample covariance it holds that

$$\operatorname{avar}\left(\hat{\tau}_{\mathsf{A}\mathsf{Y}}\right) \geq \operatorname{avar}\left(\hat{\tau}_{\mathsf{A}\mathsf{Y}}^{\mathcal{G}}\right), \qquad \quad \operatorname{avar}$$
 - asymptotic variance.

This includes estimators based on:

- covariate adjustment (Henckel et al, 2022, Witte et al, 2020),
- recursive regressions (Nandy et al, 2017, Gupta et al, 2020),
- modified Cholesky decomposition (Nandy et al, 2017).

An instance is simulated by the following steps.

- 1. Draw $\ensuremath{\mathcal{D}}$ from a random graph ensemble.
- 2. Take $\mathcal{G} = CPDAG(\mathcal{D})$.
- 3. Simulate data from a linear SCM with random error type (normal, *t*, logistic, uniform).
- 4. Choose (A, Y) such that τ_{AY} is identified from \mathcal{G} .
- 5. Compute squared error $err = \|\tau_{AY} \hat{\tau}_{AY}\|^2$.

We compare \mathcal{G} -regression to the following estimators:

- adj.0: optimal adjustment estimator (Henckel et al, 2022), or
- IDA.M: joint-IDA estimator based on modifying Cholesky decompositions (Nandy et al, 2017), or
- IDA.R: joint-IDA estimator based on recursive regressions (Nandy et al, 2017).

Violin plots displaying relative squared errors $\frac{estimator.err}{g-reg.err}$ given GES estimated CPDAG.

Violin plots displaying relative squared errors $\frac{estimator.err}{\mathcal{G}-reg.err}$ given the true DAG.

Table: Percentage of identified instances not estimable using contending estimators. All instances are estimable with $\mathcal G$ -regression.

Estimator	 A	$ \mathbf{V} = 20$	$ \mathbf{V} = 50$	$ {f V} = 100$
adj.O	1	0%	0%	0%
	2	17%	10%	5%
	3	30%	18%	15%
	4	36%	29%	22%
IDA.M	1	29%	32%	32%
	2	47%	51%	50%
	3	61%	59%	63%
	4	72%	69%	71%
IDA.R	1	29%	32%	32%
	2	47%	51%	50%
	3	61%	59%	63%
	4	72%	69%	71%

Table: Geometric average of squared errors relative to $\mathcal G\text{-}\mathsf{regression},$ computed from estimable instances.

	V = 20		V = 50			V = 100	
	n = 100	n = 1000	n = 100	n = 1000	n = 100	n = 1000	
adj.O							
1	1.3	1.3	1.4	1.3	1.5	1.5	
2	3.4	4.2	4.7	4.9	4.2	4.5	
3	6.3	5.9	7.4	7.2	7.8	8.0	
4	9.3	9.3	12	14	12	12	
IDA.M							
1	20	19	61	48	103	108	
2	62	65	220	182	293	356	
3	93	119	354	396	749	771	
4	154	222	533	895	1188	1604	
IDA.R							
1	20	19	61	48	103	108	
2	33	38	121	113	176	199	
3	30	39	171	135	342	312	
4	48	50	187	214	405	432	

Table: Geometric average of squared errors relative to $\mathcal G\text{-}regression,$ computed from estimable instances given GES estimated CPDAG

	$ \mathbf{V} = 20$		$ \mathbf{V} = 50$		V = 100	
	n = 100	n = 1000	n = 100	n = 1000	n = 100	n = 1000
adj.O						
1	1.0	1.0	1.2	1.3	1.8	1.6
2	2.0	3.1	2.4	3.1	3.2	3.7
3	3.3	5.2	4.0	5.9	4.7	5.5
4	4.6	7.9	5.0	9.0	10	8.9
IDA.M						
5	2.9	4.1	4.5	10	7.3	18
6	4.2	6.6	7.3	14	13	22
7	6.2	6.8	12	16	15	28
8	9.5	9.0	13	20	19	37
IDA.R						
9	2.9	4.1	4.5	10	7.3	18
10	2.7	4.6	4.5	9.6	8.5	15
11	3.1	4.1	5.8	7.8	7.6	14
12	3.6	4.2	4.9	8.2	8.1	15

Identification of total causal effect

 $\mathbf{S_1}, \dots, \mathbf{S_K}$ is a partition of $\mathbf{S} = An(Y, \mathcal{G}_{\mathbf{V} \setminus \{A\}})$ induced by $\mathbf{B_1}, \dots, \mathbf{B_K}$. Let $\mathbf{F_k} = \{A\} \cap pa(\mathbf{S_k}, \mathcal{G})$, for all $k \in \{1, \dots, k\}$. Then

$$P(X_{\mathbf{S}}|\mathsf{do}(X_{\mathcal{A}})) = \prod_{k=1}^{K} P(X_{\mathbf{S}_{\mathbf{k}}}|X_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G})}) = \prod_{k=1}^{K} P(X_{\mathbf{S}_{\mathbf{k}}}|X_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G})\setminus\mathbf{F}_{\mathbf{k}}}, X_{\mathbf{F}_{\mathbf{k}}} = x_{\mathbf{F}_{\mathbf{k}}}),$$

where $x_{\mathbf{F}_{\mathbf{k}}}$ is fixed by the do(x_A) operation.

$$\begin{split} X_{\mathbf{S}_{\mathbf{k}}} &| \left\{ X_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \setminus \mathbf{F}_{\mathbf{k}}}, X_{F_{i}} = x_{\mathbf{F}_{\mathbf{k}}} \right\} =_{d} \Lambda_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \setminus \mathbf{F}_{\mathbf{k}}, \mathbf{S}_{\mathbf{k}}} X_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \setminus \mathbf{F}_{\mathbf{k}}} + \Lambda_{\mathbf{F}_{\mathbf{k}}, \mathbf{S}_{\mathbf{k}}} x_{\mathbf{F}_{\mathbf{k}}} + \varepsilon_{\mathbf{S}_{\mathbf{k}}} \\ &= \Lambda_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \cap \mathbf{S}, \mathbf{S}_{\mathbf{k}}} X_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \cap \mathbf{S}} + \Lambda_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \cap \{A\}, \mathbf{S}_{\mathbf{k}}} x_{\mathsf{pa}(\mathbf{S}_{\mathbf{k}},\mathcal{G}) \cap \{A\}} + \varepsilon_{\mathbf{S}_{\mathbf{k}}} \end{split}$$

The fact that the display above holds for every k = 1, ..., K implies that the joint interventional distribution $P(X_S | do(x_A))$ satisfies

$$X_{\mathbf{S}} = \Lambda_{\mathbf{S},\mathbf{S}}^{\mathsf{T}} X_{\mathbf{S}} + \Lambda_{A,\mathbf{S}}^{\mathsf{T}} X_{A} + \varepsilon_{\mathbf{S}}$$

It follows that $X_{S} = (I - \Lambda_{S,S})^{-\intercal} (\Lambda_{A,S}^{\intercal} x_{A} + \varepsilon_{S})$ and since $Y \in S$, we have

$$\tau_{AY} = \frac{\partial}{\partial x_A} \mathbb{E}[X_Y \mid do(x_A)] = \Lambda_{A,\mathbf{S}} \left[(I - \Lambda_{\mathbf{S},\mathbf{S}})^{-1} \right]_{\mathbf{S},Y}.$$

Efficiency theory

Let Σ_n be the sample covariance. Consider the class of estimators

$$\mathcal{T} = \Big\{ \hat{\tau}(\boldsymbol{\Sigma}_n) : \mathbb{R}_{PD}^{|\boldsymbol{V}| \times |\boldsymbol{V}|} \to \mathbb{R}^{|\boldsymbol{A}|}$$

 $\hat{\tau}(\Sigma_n)$ is a differentiable and consistent estimator of τ_{AY} .

The efficiency theory entails two parts.

• Establish an efficiency bound on \mathcal{T} . The bound is derived from the gradient condition on \mathcal{T} (as in standard semiparametric efficiency theory) and a **diffeomorphism**

$$\mathbb{R}_{\mathsf{PD}}^{|\mathbf{V}|\times|\mathbf{V}|} \longleftrightarrow ((\Lambda_{\mathsf{pa}(\mathbf{B}_{\mathbf{k}},\bar{\mathcal{G}}),\mathbf{B}_{\mathbf{k}}},\Omega_k): k = 1,\ldots,K) \text{ associated with } \bar{\mathcal{G}},$$

where $\bar{\mathcal{G}}$ is the saturated version of \mathcal{G} . This generalizes a result from Drton (2018).

• Verify that $\hat{\tau}^{\mathcal{G}}_{AY}$ achieves this bound.

Efficiency theory

Saturated $\bar{\mathcal{G}}$ according to buckets.

$$\mathbf{B_1} = \{E\}, \ \mathbf{B_2} = \{A\}, \ \mathbf{B_3} = \{B, C, D\}, \ \mathbf{B_4} = \{Y\}.$$

Proof sketch

1. Suppose $|\mathbf{A}| = 1$. Rewrite $\hat{\tau} \in \mathcal{T}$ as

$$\hat{\tau}(\Sigma_n) = \hat{\tau}\left((\hat{\Lambda}_k)_{k,\mathcal{G}}, (\hat{\Lambda}_k)_{k,\mathcal{G}^c}, (\hat{\Omega}_k)_k\right),$$

where $(\hat{\Lambda}_k)_{k,\mathcal{G}^c} = (\hat{\Lambda}_k)_{k,\bar{\mathcal{G}}\setminus\mathcal{G}}$ are introduced dashed edges.

2. Consistency of $\hat{\tau}$ implies

$$\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} = \frac{\partial \tau_{\mathcal{G}}}{\partial \hat{\Lambda}_{k,\mathcal{G}}} \ (k = 2, \dots, K), \quad \frac{\partial \hat{\tau}}{\partial \hat{\Omega}_k} = \mathbf{0} \ (k = 1, \dots, K),$$

but $\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k,\mathcal{G}^c}}$ is free to vary.

3. Compute acov of $((\hat{\Lambda}_{k,\mathcal{G}})_k, (\hat{\Lambda}_{k,\mathcal{G}^c})_k)$ via asymptotic linear expansions.

4. By the delta method, an upper bound can be derived from quadratic form

$$\begin{aligned} \operatorname{avar}(\hat{\tau}) &= \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}^{c}})_{k}} \end{pmatrix}^{\mathsf{T}} \operatorname{acov}\left((\hat{\Lambda}_{k,\mathcal{G}})_{k}, (\hat{\Lambda}_{k,\mathcal{G}^{c}})_{k}\right) \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}^{c}})_{k}} \end{pmatrix} \\ &\leq \sup_{\partial \hat{\tau}/\partial (\hat{\Lambda}_{k,\mathcal{G}^{c}})_{k}} \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}^{c}})_{k}} \end{pmatrix}^{\mathsf{T}} \operatorname{acov}\left((\hat{\Lambda}_{k,\mathcal{G}})_{k}, (\hat{\Lambda}_{k,\mathcal{G}^{c}})_{k}\right) \begin{pmatrix} \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}^{c}})_{k}} \\ \frac{\partial \hat{\tau}}{\partial (\hat{\lambda}_{k,\mathcal{G}^{c}})_{k}} \end{pmatrix} \end{aligned}$$

• A causal effect is **not always** identifiable from obs. data and a causal MPDAG.

• A causal effect is **not always** identifiable from obs. data and a causal MPDAG.

Graphical criterion	DAG	CPDAG	MPDAG
Adjustment (Pearl '93, Shpitser et al '10)	\Rightarrow		
Generalized Adjustment (Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula, Truncated Factorization (Robins '86, Pearl '93)	\Leftrightarrow		
Generalized G-formula (Perković '20)	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

 $\Rightarrow \text{-sufficient for identification,} \\ \Leftrightarrow \text{-necessary and sufficient for identification}$