Identifying and Estimating Causal Effects with Incomplete Causal Information

Emilija Perković University of Washington

some joint work with F. Richard Guo,
Andrea Rotnitzky, Marloes Maathuis, Leonard Henckel

Stanford Marshmallow Experiment

$$
\begin{aligned}
& \text { "An amazing-gye-opening, transformative, riveting-book from } \\
& \text { one of the greatest psychologists of our time." }
\end{aligned}
$$

Marshmallow Test

Marshmallow Test

38	Esusame

How having self-control as a kid can affect your health later

BUSINESS INSIDER

How Self Control Leads To Success In Life, According To This Legendary Stanford Psychologist

```
F FINANCIAL TIMES _mFT
Personal Finance + Add tomyFT
Can you resist instant gratification for your finances?
The marshmallow test - and your money
```

Fashion Food Recipes Love \& sex Health $\&$ fitness Home $\&$ garden Women Men More
Health, mind and body books
The Marshmallow Test review - if you can resist, you will go far

Marshmallow Test

38	Esusame

How having self-control as a kid can affect your health later

BUSINESS INSIDER

How Self Control Leads To Success In Life, According To This Legendary Stanford Psychologist

```
F FINANCIAL TIMES _mFT
Personal Finance + Add to myFT
Can you resist instant gratification for your finances?
```

三
Fashion Food Recipes Love \& sex Health \& fitness Home \& garden Women Men More

Health, mind and body books
The Marshmallow Test review - if you can resist, you will go far

Should we train the delay of gratification?

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link?
- Do we know all relationships between these variables?

Causal Relationships

Socio
Economic
Status

Word
Memorizing
Completion

Sentences

Sibling
Relationship
Happiness

Causal Relationships

Causal Directed Acyclic Graph (DAG) \mathcal{D}.

Interventional DAG

- Randomized experiment, e.g: each participant is randomly assigned to treatment or control.
- Any change in response due to a change in treatment goes through causal paths.
- $d o\left(x_{A}\right)$: an intervention that sets variable X_{A} to x_{A}.
- $f\left(x_{Y} \mid d o\left(x_{A}\right)\right) \rightarrow$ Causal Effect

Observational Causal DAG

- $f\left(x_{\mathbf{v}}\right) \rightarrow$ Observational Data
- Access to: $f\left(x_{Y} \mid x_{A}\right), f\left(x_{Y}\right), \ldots$
- Issues: 1. In general, $f\left(x_{Y} \mid d o\left(x_{A}\right)\right) \neq f\left(x_{Y} \mid x_{A}\right)$.

Observational Causal DAG

- $f\left(x_{\mathbf{v}}\right) \rightarrow$ Observational Data
- Access to: $f\left(x_{Y} \mid x_{A}\right), f\left(x_{Y}\right), \ldots$
- Issues: 1. In general, $f\left(x_{Y} \mid d o\left(x_{A}\right)\right) \neq f\left(x_{Y} \mid x_{A}\right)$. 2. We may not know the full graph.

What if we do not know the DAG?

Causal Directed Acyclic Graph (DAG) \mathcal{D}.

What if we do not know the DAG?

Completed Partially Directed Acyclic Graph (CPDAG).

What if we do not know the DAG?

Completed Partially Directed Acyclic Graph (CPDAG).

What if we do not know the DAG?

Completed Partially Directed Acyclic Graph (CPDAG).

What if we do not know the DAG?

Completed Partially Directed Acyclic Graph (CPDAG).

What if we do not know the DAG?

Partially Directed Acyclic Graph (PDAG).

- Expert knowledge of causal relations, previous experiments, model restrictions...

What if we do not know the DAG?

Maximally oriented Partially Directed Acyclic Graph (MPDAG).
Expert knowledge of causal relations, previous experiments, model restrictions...

What if we do not know the DAG?

Completed Partially Directed Acyclic Graph (CPDAG).

Causal Framework

Causal Question

Assumptions:

Causal Answer

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.

1) Can we uniquely identify the causal effect or a set of possible effects?
2) How strong is this causal relationship?

- How to construct an estimator?
- What estimator is optimal in terms of minimal variance?

My Work

- Perković, Textor, Kalisch and Maathuis (2015). A Complete Generalized Adjustment Criterion. UAI 2015.
- Perković, Kalisch and Maathuis (2017). Interpreting and Using CPDAGs with Background Knowledge. UAI 2017.
- Perković, Textor, Kalisch and Maathuis (2018). Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs. JMLR.
- Perković (2020). Identifying total causal effects in MPDAGs. UAI 2020.
- Guo and Perković (2021). Minimal enumeration of all possible total effects in a Markov equivalence class. AISTATS 2021.
- Guo and Perković (2022). Efficient Least Squares for Estimating Total Effects under Linearity and Causal Sufficiency. JMLR.
- Henckel, Perković, and Maathuis (2022). Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Structural Equation Models. JRSS:B.
- Guo, Perković, and Rotnitzky (2022). Variable elimination, graph reduction, and efficient g-formula. Biometrika.

My Work

- Perković, Textor, Kalisch and Maathuis (2015). A Complete Generalized Adjustment Criterion. UAI 2015.
- Perković, Kalisch and Maathuis (2017). Interpreting and Using CPDAGs with Background Knowledge. UAI 2017.
- Perković, Textor, Kalisch and Maathuis (2018). Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs. JMLR.
- Perković (2020). Identifying total causal effects in MPDAGs. UAI 2020.
- Guo and Perković (2021). Minimal enumeration of all possible total effects in a Markov equivalence class. AISTATS 2021.
- Guo and Perković (2022). Efficient Least Squares for Estimating Total Effects under Linearity and Causal Sufficiency. JMLR.
- Henckel, Perković, and Maathuis (2022). Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Structural Equation Models. JRSS:B.
- Guo, Perković, and Rotnitzky (2022). Variable elimination, graph reduction, and efficient g-formula. Biometrika.

DAGs and Distributions

- Observational density $f\left(x_{\mathbf{V}}\right)$
- Interventional density $f\left(x_{\mathbf{V}} \mid d o\left(x_{A}\right)\right)$.
- A DAG \mathcal{D} is causal if for all observational and interventional densities:

$$
f\left(x_{\mathbf{V}}\right)=\prod_{J \in \mathbf{V}} f\left(x_{\jmath} \mid x_{p a(J)}\right) \quad \text { and } \quad f\left(x_{\mathbf{V}} \mid d o\left(x_{A}\right)\right)=\prod_{J \in \mathbf{V} \backslash\{A\}} f\left(x_{J} \mid x_{p a(J)}\right)
$$

$f\left(x_{B}, x_{A}, x_{Y}\right)=f\left(x_{Y} \mid x_{B}, x_{A}\right) f\left(x_{A} \mid x_{B}\right) f\left(x_{B}\right)$

$$
f\left(x_{B}, x_{Y} \mid d o\left(x_{A}\right)\right)=f\left(x_{Y} \mid x_{B}, x_{A}\right) f\left(x_{B}\right)
$$

How to define a causal effect?

Total causal effect

- Total causal effect, $\tau_{A Y}$, always defined as some function of $f\left(x_{Y} \mid d o\left(X_{A}=x_{A}\right)\right)$, E.g:

$$
\tau_{A Y}=\mathbb{E}\left[X_{Y} \mid d o\left(X_{A}=x_{A}+1\right)\right]-\mathbb{E}\left[X_{Y} \mid d o\left(X_{A}=x_{A}\right)\right]
$$

Identifiability

- A total causal effect is identifiable from observational data and a causal graph if $f\left(x_{Y} \mid d o\left(x_{A}\right)\right)$ can be expressed as a function of $f\left(X_{\mathbf{v}}\right)$.

How to define a causal effect?

Total causal effect

- Total causal effect, $\tau_{A Y}$, always defined as some function of $f\left(x_{Y} \mid d o\left(X_{A}=x_{A}\right)\right)$, E.g:

$$
\tau_{A Y}=\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(X_{A}=x_{A}+1\right)\right]-\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(X_{A}=x_{A}\right)\right]
$$

Identifiability

- A total causal effect is identifiable from observational data and a causal graph if $f\left(X_{Y} \mid d o\left(x_{A}\right)\right)$ can be expressed as a function of $f\left(X_{\mathbf{V}}\right)$.
- Given the causal DAG, every total causal effect is identifiable.

$$
\begin{aligned}
f\left(x_{Y} \mid d o\left(x_{A}\right)\right) & =\int f\left(x_{B}, x_{Y} \mid d o\left(x_{A}\right)\right) d x_{B} \\
& =\int f\left(x_{Y} \mid x_{B}, x_{A}\right) f\left(x_{B}\right) d x_{B}
\end{aligned}
$$

G-formula (Robins '86, Pearl '93)

What if we don't know the DAG?

- A causal effect is not always identifiable from obs. data and a causal MPDAG.

Graphical criterion	DAG	CPDAG	MPDAG
Adjustment (Pearl '93, Shpitser et al '10)	\Rightarrow		
Generalized Adjustment (Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula, Truncated Factorization (Robins '86, Pearl '93)	\Leftrightarrow		
Generalized G-formula (Perković'20)	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

\Rightarrow - sufficient for identification,
\Leftrightarrow - necessary and sufficient for identification

Identifiability Condition

- Can we uniquely identify the effect?

Identifiability Condition

Theorem (Perković, 2020)
The total causal effect of X_{A} on X_{Y} is identifiable in MPDAG \mathcal{G} if and only if all possibly causal paths from A to Y start with a directed edge in \mathcal{G}.

- Can we uniquely identify the effect?

Identifiability Condition

Theorem (Perković, 2020)
The total causal effect of X_{A} on X_{Y} is identifiable in MPDAG \mathcal{G} if and only if all possibly causal paths from A to Y start with a directed edge in \mathcal{G}.

- Can we uniquely identify the effect? No.

Identifiability Condition

Theorem (Perković, 2020)
The total causal effect of X_{A} on X_{Y} is identifiable in MPDAG \mathcal{G} if and only if all possibly causal paths from A to Y start with a directed edge in \mathcal{G}.

- Can we uniquely identify the effect? No.
- Can we identify the set of possible causal effects? Yes.

Set Identification

We want to have a list of possible total effects (set identification). Partition of the equivalence class of DAGs such that set identification is

1) complete: $f\left(x_{Y} \mid \mathrm{do}\left(x_{A}\right)\right)$ is identifiable under each partition
2) minimal: $\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]$ are distinct functionals of x_{A} between partitions!

Set Identification

We want to have a list of possible total effects (set identification).
Partition of the equivalence class of DAGs such that set identification is

1) complete: $f\left(x_{Y} \mid \mathrm{do}\left(x_{A}\right)\right)$ is identifiable under each partition

We could enumerate over

- all DAGs (Maathuis et al, '09)
- the valid parent sets of A (Maathuis et al, '09, Nandy et al, '17, Perković et al, '17, Witte et al, '20, Fang and He, '20)
- orientation of A - on possibly causal paths to Y (Liu et al, '20)

2) minimal: $\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]$ are distinct functionals of x_{A} between partitions!

Theorem (Perković, 2020)
The total causal effect of X_{A} on X_{Y} is identifiable in MPDAG \mathcal{G} if and only if all possilbly causal paths from A to Y start with a directed edge in \mathcal{G}.

Set Identification

We want to have a list of possible total effects (set identification).
Partition of the equivalence class of DAGs such that set identification is

1) complete: $f\left(x_{Y} \mid \mathrm{do}\left(x_{A}\right)\right)$ is identifiable under each partition

We could enumerate over

- all DAGs (Maathuis et al, '09)
- the valid parent sets of A (Maathuis et al, '09, Nandy et al, '17, Perković et al, '17, Witte et al, '20, Fang and He, '20)
- orientation of A - on possibly causal paths to Y (Liu et al, '20)

2) minimal: $\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]$ are distinct functionals of x_{A} between partitions!

- None of the above are minimal. Why is Liu et al, 20 not minimal?

Theorem (Perković, 2020)
The total causal effect of X_{A} on X_{Y} is identifiable in MPDAG \mathcal{G} if and only if all possilbly causal paths from A to Y start with a directed edge in \mathcal{G}.

Optimal enumeration

Theorem (Perković, 2020)
The total causal effect of X_{A} on X_{Y} is identifiable in MPDAG \mathcal{G} if and only if all possibly causal paths from A to Y start with a directed edge in \mathcal{G}.

Input: MPDAG $\mathcal{G}, A, Y \in \mathbf{V}$ and $A \neq Y$.

Algorithm FirstTry

1. Pick $A-V_{1}$ such that there is a possibly causal path A, V_{1}, \ldots, Y.
2. $\mathcal{G}_{1} \leftarrow \operatorname{MPDAG}\left(\mathcal{G}, A \rightarrow V_{1}\right), \mathcal{G}_{2} \leftarrow \operatorname{MPDAG}\left(\mathcal{G}, A \leftarrow V_{1}\right)$
3. Recurse on \mathcal{G}_{1} and \mathcal{G}_{2} until $f\left(x_{Y} \mid \mathrm{do}\left(x_{A}\right)\right)$ is identified
$\operatorname{MPDAG}(\mathcal{G}, R)$ adds orientations R to \mathcal{G} and completes orientation rules.

Enumeration

Omitted D and Y for simplicity.

Enumeration

Omitted D and Y for simplicity.

E
$A-B-C$

Enumeration

Omitted D and Y for simplicity.

Optimal Enumeration

Orienting $A-E$ then $A-C \ldots$

- $A-C$ should be oriented first because the status of $A-B-C-Y$ depends on $A-C-Y$.

Optimal Enumeration

Algorithm IDGraphs, (Guo \& Perković, 2021)

1. Pick $A-V_{1}$ such that A, V_{1}, \ldots, Y is a shortest possibly causal path from A to Y.
2. $\mathcal{G}_{1} \leftarrow \operatorname{MPDAG}\left(\mathcal{G}, A \rightarrow V_{1}\right), \mathcal{G}_{2} \leftarrow \operatorname{MPDAG}\left(\mathcal{G}, A \leftarrow V_{1}\right)$
3. Recurse on \mathcal{G}_{1} and \mathcal{G}_{2} until identified

Theorem (Guo \& Perković, 2021)
$\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{m}\right)$ output by the algorithm is complete and minimal.

- A small change makes a big difference!
- Have a version for the multiple exposure case as well.
- In R package eff2.

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.

1) Can we uniquely identify the causal effect or a set of possible effects? Yes (Perković 2020, Guo \& Perković, 2021).
2) How strong is this causal relationship?

- How to construct an estimator?
- What estimator is optimal in terms of minimal variance?

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.
- Data is generated by a linear structural causal model (SCM).

1) Can we uniquely identify the causal effect or a set of possible effects? Yes (Perković 2020, Guo \& Perković, 2021).
2) How strong is this causal relationship?

- How to construct an estimator?
- What estimator is optimal in terms of minimal variance?

Causal DAG, Linear Structural Causal Model (SCM)

- Data is generated by:

$$
\begin{aligned}
& X_{E}=\epsilon_{E} \\
& X_{A}=\gamma_{E A} X_{E}+\epsilon_{A} \\
& X_{B}=\gamma_{A B} X_{A}+\epsilon_{B} \\
& X_{C}=\gamma_{A C} X_{A}+\gamma_{B C} X_{B}+\epsilon_{C} \\
& X_{D}=\gamma_{A D} X_{A}+\gamma_{C D} X_{C}+\epsilon_{D} \\
& X_{Y}=\gamma_{B Y} X_{B}+\gamma_{C Y} X_{C}+\gamma_{E Y} X_{E}+\epsilon_{Y} \\
& \mathbb{E} \epsilon=0, \quad 0<\operatorname{var} \epsilon_{i}<\infty, \quad \epsilon_{i} \text { are mutually independent, }
\end{aligned}
$$

Causal DAG, Linear Structural Causal Model (SCM)

- Data is generated by:
$X=\Gamma^{\top} X+\epsilon, \quad \Gamma=\left(\gamma_{i j}\right), \quad I \nrightarrow J \Rightarrow \gamma_{i j}=0$,
$\mathbb{E} \epsilon=0, \quad 0<\operatorname{var} \epsilon_{i}<\infty, \quad \epsilon_{i}$ are mutually independent,
Γ is the weighted adjacency matrix.

Causal DAG, Linear Structural Causal Model (SCM)

- Data is generated by:

$$
\begin{aligned}
& X=\Gamma^{\top} X+\epsilon, \quad \Gamma=\left(\gamma_{i j}\right), \quad I \nrightarrow J \Rightarrow \gamma_{i j}=0 \\
& \mathbb{E} \epsilon=0, \quad 0<\operatorname{var}_{\epsilon_{i}}<\infty, \quad \epsilon_{i} \text { are mutually independent, }
\end{aligned}
$$

$$
\Gamma \text { is the weighted adjacency matrix. }
$$

- By the path tracing rules (Wright, 1934) and the G-formula:

$$
\tau_{A Y}=\cdots=\gamma_{a c} \gamma_{c y}+\gamma_{a b} \gamma_{b c} \gamma_{c y} .
$$

Block-recursive Reparametrization

- Data is generated by

$$
\begin{aligned}
& X=\Gamma^{\top} X+\epsilon, \quad \Gamma=\left(\gamma_{i j}\right), \quad I \nrightarrow J \Rightarrow \gamma_{i j}=0, \\
& \mathbb{E} \epsilon=0, \quad 0<\operatorname{var} \epsilon_{I}<\infty, \quad \epsilon_{I} \text { are mutually independent. }
\end{aligned}
$$

- Problem: Γ is not uniquely identified.

Block-recursive Reparametrization

- Idea: Consider buckets (maximal undirected connected components) in \mathcal{G} :

Block-recursive Reparametrization

E

A

- Idea: Consider buckets (maximal undirected connected components) in \mathcal{G} :

$$
\mathbf{B}_{\mathbf{1}}=\{E\}, \mathbf{B}_{\mathbf{2}}=\{\mathbf{A}\}, \mathbf{B}_{\mathbf{3}}=\{B, C, D\}, \mathbf{B}_{\mathbf{4}}=\{Y\} .
$$

Block-recursive Reparametrization

- Idea: Consider buckets (maximal undirected connected components) in \mathcal{G} :

$$
\mathbf{B}_{\mathbf{1}}=\{E\}, \mathbf{B}_{\mathbf{2}}=\{A\}, \mathbf{B}_{\mathbf{3}}=\{B, C, D\}, \mathbf{B}_{\mathbf{4}}=\{Y\} .
$$

1. The "between bucket" causal effects are identifiable. (Perković 2020).
2. Restrictive property: Each node in a bucket has the same out-of-bucket parents (Guo and Perković, 2022).

- We use this to reparametrize the SCM.

Block-recursive Reparametrization

- Idea: Consider buckets (maximal undirected connected components) in \mathcal{G} :

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{1}}=\{E\}, \mathbf{B}_{\mathbf{2}}=\{A\}, \mathbf{B}_{\mathbf{3}}=\{B, C, D\}, \mathbf{B}_{\mathbf{4}}=\{Y\} . \\
X_{\mathbf{B}_{\mathbf{i}}}= & \Gamma_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}}^{\top} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\Gamma_{\mathbf{B}_{\mathbf{i}}}^{\top} X_{\mathbf{B}_{\mathbf{i}}}+\epsilon_{\mathbf{B}_{\mathbf{i}}},
\end{aligned}
$$

Block-recursive Reparametrization

- Idea: Consider buckets (maximal undirected connected components) in \mathcal{G} :

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{1}}=\{E\}, \mathbf{B}_{\mathbf{2}}=\{A\}, \mathbf{B}_{\mathbf{3}}=\{B, C, D\}, \mathbf{B}_{\mathbf{4}}=\{Y\} . \\
X_{\mathbf{B}_{\mathbf{i}}}= & \Gamma_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}}^{\top} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\Gamma_{\mathbf{B}_{\mathbf{i}}}^{\top} X_{\mathbf{B}_{\mathbf{i}}}+\epsilon_{\mathbf{B}_{\mathbf{i}}}, \\
X_{\mathbf{B}_{\mathbf{i}}}= & \left(I-\Gamma_{\mathbf{B}_{\mathbf{i}}}\right)^{-\top} \Gamma_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\left(I-\Gamma_{\mathbf{B}_{\mathrm{i}}}\right)^{-\top} \epsilon_{\mathbf{B}_{\mathrm{i}}} \\
= & \Lambda_{\mathrm{pa}\left(\mathbf{B}_{\mathrm{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\varepsilon_{\mathbf{B}_{\mathrm{i}}},
\end{aligned}
$$

Block-recursive Reparametrization

- Idea: Consider buckets (maximal undirected connected components) in \mathcal{G} :

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{1}}=\{E\}, \mathbf{B}_{\mathbf{2}}=\{A\}, \mathbf{B}_{\mathbf{3}}=\{B, C, D\}, \mathbf{B}_{\mathbf{4}}=\{Y\} . \\
X_{\mathbf{B}_{\mathbf{i}}}= & \Gamma_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}}^{\top} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\Gamma_{\mathbf{B}_{\mathbf{i}}}^{\top} X_{\mathbf{B}_{\mathbf{i}}}+\epsilon_{\mathbf{B}_{\mathbf{i}}}, \\
X_{\mathbf{B}_{\mathbf{i}}}= & \left(I-\Gamma_{\mathbf{B}_{\mathbf{i}}}\right)^{-\top} \Gamma_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\left(I-\Gamma_{\mathbf{B}_{\mathrm{i}}}\right)^{-\top} \epsilon_{\mathbf{B}_{\mathrm{i}}} \\
= & \Lambda_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}} X_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right)}+\varepsilon_{\mathbf{B}_{\mathrm{i}}},
\end{aligned}
$$

- Suggests re-writing $\tau_{A Y}$ using elements of Λ and estimating $\Lambda_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}}$ using least squares coefficients from $\mathbf{B}_{\mathbf{i}} \sim \mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) \rightarrow \mathcal{G}$-regression.

Efficiency

Theorem (\mathcal{G}-regression, Guo and Perković, 2022)
Suppose $\tau_{A Y}$ is identifiable given MPDAG \mathcal{G} and let
$\hat{\tau}_{A Y}^{\mathcal{G}}$ be the \mathcal{G}-regression estimator.
Then for any consistent estimator $\hat{\tau}_{A Y}$ of $\tau_{A Y}$ such that $\hat{\tau}_{A Y}$ is a differentiable function of the sample covariance
it holds that

$$
\operatorname{avar}\left(\hat{\tau}_{A Y}\right) \geq \operatorname{avar}\left(\hat{\tau}_{A Y}^{\mathcal{G}}\right), \quad \text { avar }- \text { asymptotic variance. }
$$

This includes estimators based on:

- covariate adjustment (Henckel et al, 2022, Witte et al, 2020),
- recursive regressions (Nandy et al, 2017, Gupta et al, 2020),
- modified Cholesky decomposition (Nandy et al, 2017).

Marshmallow Test

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.
- Data is generated by a linear structural causal model (SCM).

1) Can we uniquely identify the causal effect or a set of possible effects?

Yes (Perković 2020, Guo \& Perković, 2021).
2) How strong is this causal relationship?

- How to construct an estimator? Generalized G-Formula (Perković 2020, Guo \& Perković, 2022, Guo, Perković, \& Rotnitzky (2022)).
- What estimator is optimal in terms of minimal variance? \mathcal{G}-regression (Guo \& Perković, 2022).

Causal Framework

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? Yes.
- Do we know all relationships between these variables? No.

Causal Framework

Causal Question

Causal Answer

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? No. \rightarrow Many open problems.
- Do we know all relationships between these variables? No.

Causal Framework

Causal Question

Causal Answer

Assumptions:

- Access to observational data + domain knowledge.
- Do we know all variables that explain or moderate link? No. \rightarrow Many open problems.
- Do we know all relationships between these variables? No.

Thanks!

Marshmallow Test Revisited

- Watts, T.W., Duncan, G.J., and Quan, H. (2018) in Psychological science.

Marshmallow Test Revisited

- Watts, T.W., Duncan, G.J., and Quan, H. (2018) in Psychological science.
\rightarrow "...Associations between delay time and measures of behavioral outcomes at age 15 were much smaller and rarely statistically significant."

Marshmallow Test Re-Revisited

- Doebel, S., Michaelson, L.E., and Munakata, Y. (2019), Psychological Science.
- Falk, A., Kosse, F., and Pinger, P. (2019), Psychological Science.
- Watts, T.W., and Duncan, G.J. (2019), Psychological Science.
- Benjamin, D.J., Laibson D., Mischel, W., Peake, P.K., Shoda, Y., Wellsjo, A.S., and Wilson N.W. (2020), Journal of Economic Behavior \& Organization

Simulation results

(a)

(c)

(b)

(d)
true effect
true poss. effects
our method
IDA (optimal)
IDA (local, collapsible)
joint-IDA

$$
\begin{aligned}
& A_{1} \text { on } Y(c) \\
& 3 \\
& \{3,2,1.8,0\} \\
& \{2.9,2.1,1.9,0\} \\
& \left\{2.9,(2.1)^{2}, 1.9,0\right\} \\
& \{2.9,2.1,2.2,1.9,0\}
\end{aligned}
$$

- Generated with a linear structural causal model with Gaussian errors and $n=100$.
- $(a)^{b}$ denotes that a appears with multiplicity b.

Simulation results

(a)

(c)

(b)

(d)
true effect
true poss. effects
our method
IDA (optimal)
IDA (local, collapsible) joint-IDA
A1, A % on Y (d)
A1, A % on Y (d)
(2,1)
(2,1)
{(2, 1), (3, 0), (0, 2), (0, 0)}
{(2, 1), (3, 0), (0, 2), (0, 0)}
{(2.1,0.9), (2.9,0), (0, 1.9), (0,0)}
{(2.1,0.9), (2.9,0), (0, 1.9), (0,0)}
{(2.1,0.9)}\mp@subsup{)}{}{6},(0,0\mp@subsup{)}{}{2},(NA,NA) 2 }
{(2.1,0.9)}\mp@subsup{)}{}{6},(0,0\mp@subsup{)}{}{2},(NA,NA) 2 }
{(2.1,0.9)}\mp@subsup{)}{}{2},(2.2,0.9),(1.9,1.1)
{(2.1,0.9)}\mp@subsup{)}{}{2},(2.2,0.9),(1.9,1.1)
(2.2,1.1) 2, (0,1.9),(2.9,0), (0,0) 2 }
(2.2,1.1) 2, (0,1.9),(2.9,0), (0,0) 2 }

- Generated with a linear structural causal model with Gaussian errors and $n=100$.
- $(a)^{b}$ denotes that a appears with multiplicity b.

Simulation: size of possible effects

colour

- IDA (local and optimal)
- IDA (local)
- our method and IDA (optimal)
shape
- distinct values
- multiset

Simulation: size of possible effects

Overview

	Comp. Cost	$\|A\|=1$	$\|A\|>1$	Duplicates
Naive - Enumerate all DAGs:				
global IDA (Maathuis et al, 2009)	$\mathcal{O}(\|V\|!)$	\checkmark	-	Yes
global joint IDA (Nandy et al, 2017)	$\mathcal{O}(\|V\|!)$	\checkmark	\checkmark	Yes
Enumerate valid parent sets of A :				
local IDA (Maathuis et al, 2009, Fang \& He, 2020)	$\mathcal{O}\left(2^{\prime(\mathcal{G)}}\right)$	\checkmark	-	Yes
semi-local IDA, joint IDA (P. et al, 2017,Nandy et al, 2017)	$\mathcal{O}\left(2^{\prime(\mathcal{G})}\right.$ poly ($\left.\|V\|\right)$)	\checkmark	\checkmark	Yes
optimal IDA (Witte et al, 2020)	$\mathcal{O}\left(2^{\prime(\mathcal{G)}}\right.$ poly $\left.(\|V\|)\right)$	\checkmark	\sim	No
Enum. A - on poss. causal paths to Y : collapsible IDA (Liu et. al, 2020)	$\mathcal{O}\left((\|V\|+\|E\|) 2^{r(\mathcal{G})}\right)$	\checkmark	-	Yes

- $I(\mathcal{G})$ - \# of undirected edges connected to A
- $r(\mathcal{G})$ - \# of edges A - on possibly causal paths to $Y, r(\mathcal{G}) \leq I(\mathcal{G})$

Overview

	Comp. Cost	$\|A\|=1$	$\|A\|>1$	Duplicates
Naive - Enumerate all DAGs:				
global IDA (Maathuis et al, 2009)	$\mathcal{O}(\|V\|!)$	\checkmark	-	Yes
global joint IDA (Nandy et al, 2017)	$\mathcal{O}(\|V\|!)$	\checkmark	\checkmark	Yes
Enumerate valid parent sets of A :				
local IDA (Maathuis et al, 2009, Fang \& He, 2020)	$\mathcal{O}\left(2^{\prime(\mathcal{G)}}\right)$	\checkmark	-	Yes
semi-local IDA, joint IDA (P. et al, 2017,Nandy et al, 2017)	$\mathcal{O}\left(2^{\text {I(G) }}\right.$ poly ($\left.\left.\|V\|\right)\right)$	\checkmark	\checkmark	Yes
optimal IDA (Witte et al, 2020)	$\mathcal{O}\left(2^{\prime(\mathcal{G})}\right.$ poly (\mid V\|) $)$	\checkmark	\sim	No
Enum. A - on poss. causal paths to Y :				
Recursively enum. over shortest problem paths				
IDGraphs (Guo \& Perković)	$\mathcal{O}\left(2^{m(\mathcal{G})}\right.$ poly $\left.(\|V\|)\right)$	\checkmark	\checkmark	No

- $I(\mathcal{G})$ - \# of undirected edges connected to A
- $r(\mathcal{G})$ - \# of edges A - on possibly causal paths to $Y, r(\mathcal{G}) \leq I(\mathcal{G})$
- $m(\mathcal{G})$ - \# of recursively id. edges A - on proper possibly causal paths to $Y, m(\mathcal{G}) \leq r(\mathcal{G})$

Average runtime simulation comparison

Generalized G-Formula and \mathcal{G}-Regression

- Generalized G-Formula and \mathcal{G}-regression:

$$
\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]=\int \mathbb{E}\left[X_{Y} \mid x_{B}, x_{C}, x_{E}\right] f\left(x_{B}, x_{C} \mid x_{A}\right) f\left(x_{E}\right) d x_{B} d x_{C} d x_{E}
$$

Same Generalized G-Formula and \mathcal{G}-Regression

- The generalized G-formula is the same in the above MPDAG.

$$
\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]=\int \mathbb{E}\left[X_{Y} \mid x_{B}, x_{C}, x_{E}\right] f\left(x_{B}, x_{C} \mid x_{A}\right) f\left(x_{E}\right) d x_{B} d x_{C} d x_{E}
$$

Same Generalized G-Formula and \mathcal{G}-Regression

- As well as in the above MPDAG.

$$
\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]=\int \mathbb{E}\left[X_{Y} \mid x_{B}, x_{C}, x_{E}\right] f\left(x_{B}, x_{C} \mid x_{A}\right) f\left(x_{E}\right) d x_{B} d x_{C} d x_{E}
$$

Same Generalized G-Formula and \mathcal{G}-Regression

- As well as in the above MPDAG.

$$
\mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]=\int \mathbb{E}\left[X_{Y} \mid x_{B}, x_{C}, x_{E}\right] f\left(x_{B}, x_{C} \mid x_{A}\right) f\left(x_{E}\right) d x_{B} d x_{C} d x_{E}
$$

- Indicating that: measurement of all variables not needed for efficient causal estimation.
- We explore these implications in Guo, Perković and Rotnitzky (2022). Opportunities for future work.

Block-recursive reparametrization

Proposition (Block-recursive form, Guo and Perković, 2022)
Let $\mathbf{B}_{\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{K}}$ be the ordered bucket decomposition of \mathbf{V} in MPDAG \mathcal{G}. Then

$$
\begin{aligned}
& X=\Lambda^{\top} X+\varepsilon, \quad \Lambda=\left(\lambda_{i j}\right), J \in \mathbf{B}_{\mathbf{k}}, I \notin \mathrm{pa}\left(\mathbf{B}_{\mathbf{k}}, \mathcal{G}\right) \quad \Rightarrow \quad \lambda_{i j}=0, \\
& \mathbb{E} \varepsilon=0, \quad \mathbb{E} \varepsilon_{\mathbf{B}_{\mathbf{k}}} \varepsilon_{\mathbf{B}_{\mathbf{k}}}^{\top} \succ \mathbf{0}, \quad \varepsilon_{\mathbf{B}_{\mathbf{k}}} \text { mutually independent }
\end{aligned}
$$

Two nice things happen under this re-parametrization:

- For $\mathbf{S}=\operatorname{An}\left(Y, \mathcal{G}_{\mathbf{V} \backslash\{A\}}\right), \tau_{A Y}$ can be identified as

$$
\tau_{A Y}=\Lambda_{A, \mathbf{s}}\left[\left(I-\Lambda_{\mathbf{s}, \mathbf{s}}\right)^{-1}\right]_{\mathbf{s}, Y} .
$$

The bucket-wise error distribution is a nuisance.

- Under Gaussian errors, the MLE for each $\Lambda_{p a\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right), \mathbf{B}_{\mathbf{i}}}$ corresponds to the least squares coefficients from $\mathbf{B}_{\mathbf{i}} \sim \mathrm{pa}\left(\mathbf{B}_{\mathbf{i}}, \mathcal{G}\right) . \quad \rightarrow \mathcal{G}$-regression.

Efficiency

Theorem (\mathcal{G}-regression, Guo and Perković, 2022)
If $\tau_{A Y}$ is identifiable given MPDAG \mathcal{G}, the \mathcal{G}-regression estimator is defined as:

$$
\hat{\tau}_{A Y}^{\mathcal{G}}:=\hat{\Lambda}_{A, \mathbf{S}}^{\mathcal{G}}\left[\left(I-\hat{\Lambda}_{\mathbf{S}, \mathbf{S}}^{\mathcal{G}}\right)^{-1}\right]_{\mathbf{S}, Y}
$$

where $\mathbf{S}=\operatorname{An}\left(Y, \mathcal{G}_{\mathbf{V} \backslash\{A\}}\right)$, and $\hat{\Lambda}^{\mathcal{G}}$ is matrix consisting of least squares coefficients for each "bucket" regression.

Then for any consistent estimator $\hat{\tau}_{A Y}$ of $\tau_{A Y}$ such that $\hat{\tau}_{A Y}$ is a differentiable function of the sample covariance it holds that

$$
\operatorname{avar}\left(\hat{\tau}_{A Y}\right) \geq \operatorname{avar}\left(\hat{\tau}_{A Y}^{\mathcal{G}}\right), \quad \text { avar }- \text { asymptotic variance. }
$$

This includes estimators based on:

- covariate adjustment (Henckel et al, 2022, Witte et al, 2020),
- recursive regressions (Nandy et al, 2017, Gupta et al, 2020),
- modified Cholesky decomposition (Nandy et al, 2017).

Simulation results

An instance is simulated by the following steps.

1. Draw \mathcal{D} from a random graph ensemble.
2. Take $\mathcal{G}=\operatorname{CPDAG}(\mathcal{D})$.
3. Simulate data from a linear SCM with random error type (normal, t, logistic, uniform).
4. Choose (A, Y) such that $\tau_{A Y}$ is identified from \mathcal{G}.
5. Compute squared error err $=\left\|\tau_{A Y}-\hat{\tau}_{A Y}\right\|^{2}$.

We compare \mathcal{G}-regression to the following estimators:

- adj.0: optimal adjustment estimator (Henckel et al, 2022), or
- IDA.M: joint-IDA estimator based on modifying Cholesky decompositions (Nandy et al, 2017), or
- IDA.R: joint-IDA estimator based on recursive regressions (Nandy et al, 2017).

Simulation results

adj. O IDA.M IDA.R

adj. O IDA.M IDA.R
adj. O IDA.M IDA.R
 method

adj. O IDA.M IDA.R

Violin plots displaying relative squared errors $\frac{\text { estimator.err }}{\mathcal{G}-\text { reg.err }}$ given GES estimated CPDAG.

Simulation results

Violin plots displaying relative squared errors $\frac{\text { estimator.err }}{\mathcal{G}-\text { reg.err }}$ given the true DAG.

Simulation results

Table: Percentage of identified instances not estimable using contending estimators. All instances are estimable with \mathcal{G}-regression.

Estimator	$\|\mathbf{A}\|$	$\|\mathbf{V}\|=20$	$\|\mathbf{V}\|=50$	$\|\mathbf{V}\|=100$
	1	0%	0%	0%
adj.0	2	17%	10%	5%
	3	30%	18%	15%
	4	36%	29%	22%
	1	29%	32%	32%
IDA.M	2	47%	51%	50%
	3	61%	59%	63%
	4	72%	69%	71%
	1	29%	32%	32%
IDA.R	2	47%	51%	50%
	3	61%	59%	63%
	4	72%	69%	71%

Simulation results

Table: Geometric average of squared errors relative to \mathcal{G}-regression, computed from estimable instances.

	$\|\mathbf{V}\|=20$		$\|\mathbf{V}\|=50$		$\|\mathbf{V}\|=100$	
$\|\mathbf{A}\|$	$n=100$	$n=1000$	$n=100$	$n=1000$	$n=100$	$n=1000$
adj.O						
1	1.3	1.3	1.4	1.3	1.5	1.5
2	3.4	4.2	4.7	4.9	4.2	4.5
3	6.3	5.9	7.4	7.2	7.8	8.0
4	9.3	9.3	12	14	12	12
IDA.M						
1	20	19	61	48	103	108
2	62	65	220	182	293	356
3	93	119	354	396	749	771
4	154	222	533	895	1188	1604
IDA.R						
1	20	19	61	48	103	108
2	33	38	171	113	135	342
3	30	39	187	214	405	312
4	48	50				432

Simulation results

Table: Geometric average of squared errors relative to \mathcal{G}-regression, computed from estimable instances given GES estimated CPDAG

	$\|\mathbf{V}\|=20$		$\|\mathbf{V}\|=50$		$\|\mathbf{V}\|=100$	
$\|\mathbf{A}\|$	$n=100$	$n=1000$	$n=100$	$n=1000$	$n=100$	$n=1000$
adj.0						
1	1.0	1.0	1.2	1.3	1.8	1.6
2	2.0	3.1	2.4	3.1	3.2	3.7
3	3.3	5.2	4.0	5.9	4.7	5.5
4	4.6	7.9	5.0	9.0	10	8.9
IDA.M						
5	2.9	4.1	4.5	10	7.3	18
6	4.2	6.6	1.3	14	13	22
7	6.2	6.8	12	16	15	28
8	9.5	9.0	13	20	19	37
IDA.R						
9	2.9	4.1	4.5	10	7.3	18
10	2.7	4.6	5.8	7.8	7.5	15
11	3.1	4.1	4.9	8.2	8.1	14
12	3.6	4.2				15

Identification of total causal effect

$\mathbf{S}_{\mathbf{1}}, \ldots, \mathbf{S}_{\mathbf{K}}$ is a partition of $\mathbf{S}=A n(Y, \mathcal{G} \mathbf{V} \backslash\{A\})$ induced by $\mathbf{B}_{\mathbf{1}}, \ldots, \mathbf{B}_{\mathbf{K}}$. Let $\mathbf{F}_{\mathbf{k}}=\{A\} \cap \mathrm{pa}\left(\mathbf{S}_{\mathbf{k}}, \mathcal{G}\right)$, for all $k \in\{1, \ldots, k\}$. Then

$$
P\left(X_{\mathbf{s}} \mid \operatorname{do}\left(X_{A}\right)\right)=\prod_{k=1}^{K} P\left(X_{\mathbf{s}_{\mathbf{k}}} \mid X_{\mathrm{pa}\left(\mathbf{s}_{\mathbf{k}}, \mathcal{G}\right)}\right)=\prod_{k=1}^{K} P\left(X_{\mathbf{s}_{\mathbf{k}}} \mid X_{\mathrm{pa}\left(\mathbf{s}_{\mathbf{k}}, \mathcal{G}\right) \backslash \mathbf{F}_{\mathbf{k}}}, X_{\mathbf{F}_{\mathbf{k}}}=X_{\mathbf{F}_{\mathbf{k}}}\right)
$$

where $x_{\mathbf{F}_{\mathbf{k}}}$ is fixed by the $\mathrm{do}\left(x_{A}\right)$ operation.

$$
\begin{aligned}
X_{\mathbf{s}_{\mathbf{k}}} \mid & \left\{X_{\mathrm{pa}\left(\mathbf{s}_{\mathbf{k}}, \mathcal{G}\right) \backslash \mathbf{F}_{\mathbf{k}}}, X_{F_{i}}=X_{\mathbf{F}_{\mathbf{k}}}\right\}={ }_{d} \Lambda_{\mathrm{pa}\left(\mathbf{s}_{\mathbf{k}}, \mathcal{G}\right) \backslash \mathbf{F}_{\mathbf{k}}, \mathbf{s}_{\mathbf{k}}} X_{\mathrm{pa}\left(\mathbf{S}_{\mathbf{k}}, \mathcal{G}\right) \backslash \mathbf{F}_{\mathbf{k}}}+\Lambda_{\mathbf{F}_{\mathbf{k}}, \mathbf{S}_{\mathbf{k}}} X_{\mathbf{F}_{\mathbf{k}}}+\varepsilon_{\mathbf{S}_{\mathbf{k}}} \\
& =\Lambda_{\mathrm{pa}\left(\mathbf{s}_{\mathbf{k}}, \mathcal{G}\right) \cap \mathbf{S}, \mathbf{s}_{\mathbf{k}}} X_{\mathrm{pa}\left(\mathbf{S}_{\mathbf{k}}, \mathcal{G}\right) \cap \mathbf{s}}+\Lambda_{\mathrm{pa}\left(\mathbf{S}_{\mathbf{k}}, \mathcal{G}\right) \cap\{\mathrm{A}\}, \mathbf{s}_{\mathbf{k}} X_{\mathrm{pa}\left(\mathbf{S}_{\mathbf{k}}, \mathcal{G}\right) \cap\{\mathrm{A}\}}+\varepsilon_{\mathbf{s}_{\mathbf{k}}}}
\end{aligned}
$$

The fact that the display above holds for every $k=1, \ldots, K$ implies that the joint interventional distribution $P\left(X_{\mathbf{s}} \mid \mathrm{do}\left(x_{A}\right)\right)$ satisfies

$$
X_{\mathbf{s}}=\Lambda_{\mathbf{s}, \mathbf{s}}^{T} X_{\mathbf{S}}+\Lambda_{A, \mathbf{s}}^{\top} x_{A}+\varepsilon_{\mathbf{S}} .
$$

It follows that $X_{\mathbf{s}}=\left(I-\Lambda_{\mathbf{s}, \mathbf{s}}\right)^{-\top}\left(\Lambda_{A, \mathbf{s}}^{\top} X_{A}+\varepsilon_{\mathbf{s}}\right)$ and since $Y \in \mathbf{S}$, we have

$$
\tau_{A Y}=\frac{\partial}{\partial x_{A}} \mathbb{E}\left[X_{Y} \mid \operatorname{do}\left(x_{A}\right)\right]=\Lambda_{A, \mathbf{S}}\left[\left(I-\Lambda_{\mathbf{s}, \mathbf{s}}\right)^{-1}\right]_{\mathbf{S}, Y} .
$$

Efficiency theory

Let Σ_{n} be the sample covariance. Consider the class of estimators

$$
\mathcal{T}=\left\{\hat{\tau}\left(\Sigma_{n}\right): \mathbb{R}_{\mathrm{PD}}^{|\mathbf{V}| \times|\mathbf{V}|} \rightarrow \mathbb{R}^{|\mathbf{A}|}:\right.
$$

$$
\left.\hat{\tau}\left(\Sigma_{n}\right) \text { is a differentiable and consistent estimator of } \tau_{A Y}\right\} .
$$

The efficiency theory entails two parts.

- Establish an efficiency bound on \mathcal{T}. The bound is derived from the gradient condition on \mathcal{T} (as in standard semiparametric efficiency theory) and a diffeomorphism

$$
\mathbb{R}_{\mathrm{PD}}^{|\mathbf{V}| \times|\mathbf{V}|} \longleftrightarrow\left(\left(\Lambda_{\mathrm{pa}\left(\mathbf{B}_{\mathbf{k}}, \overline{\mathcal{G}}\right), \mathbf{B}_{\mathbf{k}}}, \Omega_{k}\right): k=1, \ldots, K\right) \text { associated with } \overline{\mathcal{G}}
$$

where $\overline{\mathcal{G}}$ is the saturated version of \mathcal{G}. This generalizes a result from Drton (2018).

- Verify that $\hat{\tau}_{A Y}^{\mathcal{G}}$ achieves this bound.

Efficiency theory

Saturated $\overline{\mathcal{G}}$ according to buckets.

$$
\mathbf{B}_{\mathbf{1}}=\{E\}, \mathbf{B}_{\mathbf{2}}=\{A\}, \mathbf{B}_{\mathbf{3}}=\{B, C, D\}, \mathbf{B}_{\mathbf{4}}=\{Y\} .
$$

Proof sketch

1. Suppose $|\mathbf{A}|=1$. Rewrite $\hat{\tau} \in \mathcal{T}$ as

$$
\hat{\tau}\left(\Sigma_{n}\right)=\hat{\tau}\left(\left(\hat{\Lambda}_{k}\right)_{k, \mathcal{G}},\left(\hat{\Lambda}_{k}\right)_{k, \mathcal{G}^{c}},\left(\hat{\Omega}_{k}\right)_{k}\right),
$$

where $\left(\hat{\Lambda}_{k}\right)_{k, \mathcal{G}^{c}}=\left(\hat{\Lambda}_{k}\right)_{k, \overline{\mathcal{G}} \backslash \mathcal{G}}$ are introduced dashed edges.
2. Consistency of $\hat{\tau}$ implies

$$
\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k, \mathcal{G}}}=\frac{\partial \tau_{\mathcal{G}}}{\partial \hat{\Lambda}_{k, \mathcal{G}}}(k=2, \ldots, K), \quad \frac{\partial \hat{\tau}}{\partial \hat{\Omega}_{k}}=\mathbf{0}(k=1, \ldots, K),
$$

but $\frac{\partial \hat{\tau}}{\partial \hat{\Lambda}_{k, \mathcal{G}^{c}}}$ is free to vary.
3. Compute acov of $\left(\left(\hat{\Lambda}_{k, \mathcal{G}}\right)_{k},\left(\hat{\Lambda}_{k, \mathcal{G}^{c}}\right)_{k}\right)$ via asymptotic linear expansions.
4. By the delta method, an upper bound can be derived from quadratic form

$$
\begin{aligned}
& \operatorname{avar}(\hat{\tau})=\binom{\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k}\right)_{k}}}{\left.\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k, \mathcal{G}} c\right.}\right)_{k}}^{\top} \operatorname{acov}\left(\left(\hat{\Lambda}_{k, \mathcal{G}}\right)_{k},\left(\hat{\Lambda}_{k, \mathcal{G} c}\right)_{k}\right)\binom{\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k, \mathcal{G}}\right)_{k}}}{\left.\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k, \mathcal{G}} c\right.}\right)_{k}} \\
& \leq \sup _{\partial \hat{\tau} / \partial\left(\hat{\Lambda}_{k, \mathcal{G}^{c}}\right)_{k}}\binom{\frac{\partial \hat{\gamma}}{\partial\left(\hat{\Lambda}_{k}\right)_{k}}}{\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k}, \mathcal{G}^{c}\right)_{k}}}^{\top} \operatorname{acov}\left(\left(\hat{\Lambda}_{k, \mathcal{G}}\right)_{k},\left(\hat{\Lambda}_{k, \mathcal{G}^{c}}\right)_{k}\right)\binom{\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k}, \mathcal{G}\right)_{k}}}{\frac{\partial \hat{\tau}}{\partial\left(\hat{\Lambda}_{k, \mathcal{G}^{c}}\right)_{k}}} \text {. }
\end{aligned}
$$

What if we don't know the DAG?

What if we don't know the DAG?

DAG

Completed Partially Directed
Acyclic Graph (CPDAG)

Maximally Oriented PDAG
(MPDAG)

What if we don't know the DAG?

- A causal effect is not always identifiable from obs. data and a causal MPDAG.

What if we don't know the DAG?

- A causal effect is not always identifiable from obs. data and a causal MPDAG.

Graphical criterion	DAG	CPDAG	MPDAG
Adjustment (Pearl '93, Shpitser et al '10)	\Rightarrow		
Generalized Adjustment (Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula, Truncated Factorization (Robins '86, Pearl'93)	\Leftrightarrow		
Generalized G-formula (Perković''20)	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

\Rightarrow - sufficient for identification,
\Leftrightarrow - necessary and sufficient for identification

