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http://floodobservatory.colorado.edu/Events/2017USA4510/2017USA4510.html
http://floodobservatory.colorado.edu/Events/2017USA4510/2017USA4510.html
http://rammb.cira.colostate.edu/ramsdis/online/images/loop_of_the_day/goes-16/20170828000000/video/20170828000000_harveyir.gif
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Digital Globe
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Computer Vision Tasks

Classification Segmentation Object Detection

/

Single object \

Multiple objects

https://medium.com/comet-app/review-of-deep-learning-
algorithms-for-object-detection-c1f3d437b852



Computer Vision with Satellite Imagery

Classification

Building y/n

DigitalGlobe Hurricane Harvey satellite imagery

Segmentation

Flooded Roads vs. Background

https://devblogs.nvidia.com/solving-spacenet-road-
detection-challenge-deep-learning/

Object Detection

Buildings with Bounding Boxes

https://medium.com/@dariusl/object-detection-baselines-in-
overhead-imagery-with-diux-xview-c39b1852f24f




Object Detection
e Faster R-CNN (Ren et al., 2015)

e Single Shot MultiBox Detector (SSD)
(Liu et al., 2016)

q-‘

TOMNOD damage predictions with SSD NOAA damage predictions with SSD



Pipeline

Raw Data Image Tiling

Data
Processing

Model Training

and Inference
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Experiment Setup

Data

e Satellite Imagery /
Aerial Imagery

e Bounding boxes
with labels

e Input size:
200 x 200

Data

Augmentation Platform
Translation e GPU: Tesla K80
Rotation on AWS

Blur e Implementation:
Zoom In Tensorflow
Zoom QOut

Flip
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Run Alternatives

Detection Algorithm

Faster R-CNN

Imagery data

Satellite
(DigitalGlobe)

Aerial
(NOAA)

Satellite
(DigitalGlobe)

Damage data

Annotated

points
(TOMNOD)

Parcel-based
assessment
(FEMA)

Annotated

points
(TOMNOD)

Building footprints

Joined

dataset

(Microsoft, Oak
Ridge)

Microsoft
building
footprints

Joined

dataset

(Microsoft, Oak
Ridge)

Train/Test Split

Random
selection within
same
geographic area

Random
selection within
same
geographic area

Random
selection within
same
geographic area
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Evaluation: loU (Intersection over Union)

POOR GOOD EXCELLENT
loU: 0.4034 loU: 0.7330 loU: 0.9264




Evaluation

loU (Intersection over Union) at .5

B — Human-labeled box
I — Model “yes”, TRUE

I — Model “yes”, FALSE




Evaluation: Scoring
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Results

AP for Damaged/Flooded buildings 0.47

0.33

0.05

Damaged Only Damaged + Non-Damaged Damaged + Non-Damaged
+ Augmentation

Training Data



Alternative Flooded/Damaged Non-damaged Evaluation Score (mAP)
SSD on 0.47 0.62 0.55
Satellite Imagery
SSD on 0.32 0.65 0.48
Aerial Imagery
Faster R-CNN 0.31 0.6 0.46
Satellite Imagery




Evaluation

Human-labeled data Predicted output

|
Flooded/Damaged

|dentify Flooded Buildings




Evaluation

Human-labeled data Predicted output

|dentify Flooded Buildings




Evaluation

Human-labeled data Predicted output
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|dentify Damaged Buildings (Blue Tarp)




Evaluation

Human-labeled data Predicted output

|dentify Damaged Buildings
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https://dds-lab.github.io/
disaster-damage-detection/
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Questions




Evaluation

_ — Human-labeled box

I Model prediction

I True positive count

I False positive count

I False negative count

TRUENM

Actual

FALSE...

Model prediction

Positive Negative




Evaluation

Precision and Recall

Prediction

- Positive Negative

-

Recall =

Precision =




Evaluation

Precision and Recall

Recall =
- + - Precision
5
; -
Precision =
-
0 o) 1

Recall



Evaluation

Precision and Recall

Adjust
confidence
- 1 threshold
Recall =
.5
Precision =
-
0 .5 1

Recall



Evaluation

Average Precision (AP) = Average precision
across evenly divided points on the curve

Precision and Recall

Precision

o

.5

Recall




Evaluation

Mean Average Precision

Mean Average Precision (mAP) = mean of AP for
each class (damaged and non-damaged)

AP . AP

damage non-damaged

d 2



Evaluation

B — Human-labeled box




Evaluation

Non-max suppression at loU at .5

B — Human-labeled box

I — Model prediction




Evaluation

Non-max suppression at loU at .5

B — Human-labeled box

I — Model prediction

Highest-confidence box out of
overlapping boxes remains

No predicted box with high
confidence here




Evaluation

loU < .5 Non-max suppression at loU at .5

BN — Human-labeled box
I — Model prediction
P — Model “yes”, TRUE

I — Model “yes”, FALSE




Evaluation

loU (Intersection over Union) at .5

BN — Human-labeled box
I — Model prediction
P — Model “yes”, TRUE

I — Model “yes”, FALSE




Evaluation

Scoring

B — Human-labeled box
I — Model prediction

P — Model “yes”, TRUE
I — Model “yes”, FALSE

I — Model “no”, FALSE

Counts as “correctly” predicted




