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Image source: National Oceanic and Atmospheric Administration (NOAA) 

http://floodobservatory.colorado.edu/Events/2017USA4510/2017USA4510.html
http://floodobservatory.colorado.edu/Events/2017USA4510/2017USA4510.html
http://rammb.cira.colostate.edu/ramsdis/online/images/loop_of_the_day/goes-16/20170828000000/video/20170828000000_harveyir.gif
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Automatic Damage Detection 
Using Post-Hurricane 
Satellite Imagery

The Solution



Traditional: Ground-Level

Aerial: Intermediate-Level

Satellite: High-Level
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Digital Globe
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TOMNOD



FEMA v. TOMNOD



Oak Ridge National Labs



Microsoft
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Computer Vision Tasks

  Classification                                  Segmentation            Object Detection

Single object
Multiple objects

https://medium.com/comet-app/review-of-deep-learning-
algorithms-for-object-detection-c1f3d437b852



  Classification                                  Segmentation            Object Detection

Computer Vision with Satellite Imagery

Building y/n Flooded Roads vs. Background Buildings with Bounding Boxes

https://medium.com/@dariusl/object-detection-baselines-in-
overhead-imagery-with-diux-xview-c39b1852f24fDigitalGlobe Hurricane Harvey satellite imagery https://devblogs.nvidia.com/solving-spacenet-road-

detection-challenge-deep-learning/



Object Detection

● Faster R-CNN (Ren et al., 2015) 

● Single Shot MultiBox Detector (SSD)  
(Liu et al., 2016) 

NOAA damage predictions with SSDTOMNOD damage predictions with SSD



Pipeline

Image Tiling

Data 
Processing

Model Training 
and Inference

Raw Data
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Platform

● Translation 
● Rotation 
● Blur 
● Zoom In  
● Zoom Out 
● Flip 
● ...

Experiment Setup

Data 

● GPU: Tesla K80 
on AWS 

● Implementation: 
Tensorflow

● Satellite Imagery / 
Aerial Imagery 

● Bounding boxes 
with labels 

● Input size:  
200 x 200

Data 
Augmentation 
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Run Alternatives

2

1

SSD

SSD

Detection Algorithm Imagery data Damage data

Satellite 
(DigitalGlobe)

Aerial 
(NOAA)

Annotated 
points 

(TOMNOD)

Parcel-based 
assessment 

(FEMA)

Building footprints

Microsoft 
building 

footprints

Train/Test Split

Random 
selection within 

same 
geographic area

Random 
selection within 

same 
geographic area

3 Faster R-CNN Satellite 
(DigitalGlobe)

Annotated 
points 

(TOMNOD)

Joined 
dataset 

(Microsoft, Oak 
Ridge)

Random 
selection within 

same 
geographic area

Joined 
dataset 

(Microsoft, Oak 
Ridge)
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Evaluation: IoU (Intersection over Union)

POOR GOOD EXCELLENT
IoU: 0.4034 IoU: 0.7330 IoU: 0.9264



Evaluation

IoU (Intersection over Union) at .5

Human-labeled box

Model “yes”, TRUE

Model “yes”, FALSE



Evaluation: Scoring

.5

1

0

Perfect

Score (mean Average Precision)

Not bad

Useless

Damaged

Not Damaged

Model Predicts: 
“Damaged”



Results

0.05

0.33

0.47

Damaged Only Damaged + Non-Damaged Damaged + Non-Damaged 
+ Augmentation



Results

Alternative Flooded/Damaged Non-damaged Evaluation Score (mAP) 

SSD on  
Satellite Imagery

0.47 0.62 0.55

SSD on  
Aerial Imagery

0.32 0.65 0.48

Faster R-CNN 
Satellite Imagery

0.31 0.61 0.46



Evaluation

Human-labeled data Predicted output

Identify Flooded Buildings

Flooded/Damaged



Evaluation

Human-labeled data Predicted output

Identify Flooded Buildings



Evaluation

Human-labeled data Predicted output

Identify Damaged Buildings (Blue Tarp)



Evaluation

Human-labeled data Predicted output

Identify Damaged Buildings 
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https://dds-lab.github.io/
disaster-damage-detection/
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Questions



Evaluation

Model prediction

True positive count

False positive count

Human-labeled box

False negative count

Model prediction

Positive Negative

TRUE!!!!

FALSE...

Actual



Evaluation

Precision and Recall

Prediction

Positive Negative

TRUE!!!!

FALSE...

Recall = 

Precision = 

+

+
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Recall 

Precision 

.5

0 .5 1



Evaluation

Precision and Recall 

Recall 

Precision 

1

.5

0 .5 1

Adjust 
confidence 
threshold

Recall = 

Precision = 

+

+



Evaluation

Precision and Recall 

Recall 

Precision 

1

.5

0 .5 1

Average Precision (AP) = Average precision 
across evenly divided points on the curve



Evaluation

Mean Average Precision

Mean Average Precision (mAP) = mean of AP for 
each class (damaged and non-damaged)

2

APdamage

d

APnon-damaged+



Evaluation

Human-labeled box



Evaluation

Non-max suppression at IoU at .5

Model prediction

Human-labeled box



Evaluation

Model prediction

Highest-confidence box out of 
overlapping boxes remains

Non-max suppression at IoU at .5

No predicted box with high 
confidence here

Human-labeled box



Evaluation

Model prediction

Model “yes”, TRUE

Model “yes”, FALSE

IoU < .5 Non-max suppression at IoU at .5

IoU > .5

Human-labeled box



Evaluation

IoU (Intersection over Union) at .5

Model prediction

Human-labeled box

Model “yes”, TRUE

Model “yes”, FALSE



Evaluation

Scoring

Model prediction

Counts as “correctly” predicted

Human-labeled box

Model “no”, FALSE

Model “yes”, TRUE

Model “yes”, FALSE


