From Migration Corridors to Clusters: Using Google+ Data for Migration Studies

Johnnatan Messias¹ Fabricio Benevenuto¹ Ingmar Weber² Emilio Zagheni³

¹Universidad Federal de Minas Gerais, Belo Horizonte

²Qatar Computing Research Institute, Doha

³University of Washington, Seattle

eScience lightning talks UW, Seattle, Tue, May 31, 2016

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Data about international migration are bad

Different degrees of 'badness of data'

• Stocks of migrants \rightarrow based on census data, not-too-bad

・ロト ・ 日 ・ モー・ モー・ うへぐ

Different degrees of 'badness of data'

- Stocks of migrants \rightarrow based on census data, not-too-bad
- Flows of migrants → come from surveys, registration systems or indirect methods, but often inconsistent → pretty bad

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Different degrees of 'badness of data'

- Stocks of migrants \rightarrow based on census data, not-too-bad
- Flows of migrants → come from surveys, registration systems or indirect methods, but often inconsistent → pretty bad
- ▶ Migration histories (residential history for the same group of individuals over time) →
 practically inexistent

Web data can complement existing data sources

- ► Most of the work in this area has dealt with improving estimates of flows:
 - ► Geolocated Yahoo! logins (Zagheni, Weber and State 2012,2013)
 - ► Geolocated Twitter data (Hawelka et al. 2014; Zagheni et al. 2014)

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- ▶ Professional histories of LinkedIn users (State et al. 2014)
- ► Skype calls and networks (Kikas et al. 2015)
- Facebook logins (Hofleitner, Ruths et al.)
- • •

Web data can complement existing data sources

- ► Most of the work in this area has dealt with improving estimates of flows:
 - ▶ Geolocated Yahoo! logins (Zagheni, Weber and State 2012,2013)
 - ► Geolocated Twitter data (Hawelka et al. 2014; Zagheni et al. 2014)

- ▶ Professional histories of LinkedIn users (State et al. 2014)
- ► Skype calls and networks (Kikas et al. 2015)
- ► Facebook logins (Hoffeitner, Ruths et al.)
- ▶ · · ·
- One of the goals of my research is to combine traditional and new data sources within a solid statistical framework (see poster)

Web data can complement existing data sources

- ► Most of the work in this area has dealt with improving estimates of flows:
 - ▶ Geolocated Yahoo! logins (Zagheni, Weber and State 2012,2013)
 - ► Geolocated Twitter data (Hawelka et al. 2014; Zagheni et al. 2014)
 - ▶ Professional histories of LinkedIn users (State et al. 2014)
 - ► Skype calls and networks (Kikas et al. 2015)
 - ► Facebook logins (Hoffeitner, Ruths et al.)
 - **•** • •
- One of the goals of my research is to combine traditional and new data sources within a solid statistical framework (see poster)
- ⇒ For this paper, the focus is on pseudo-migration histories of Google+ users and on how countries are clustered together by migration flows in different ways

Google+ Data Set


- Data originally collected by Gabriel Magno in 2012 to study gender differences in online social networks
- We considered the Google+ field ("Places where I lived") mapped to countries
- We used the subset of users who have lived in at least 2 countries (n ≈ 1.6 million users).
 270,000 users have lived in 3 countries.

No obvious relationship between pairs of countries and triples of countries people have lived in

		Countries Lived In				Bilateral Flows
		A	В	С	D	
Scenario 1	M1	Х	Х	Х		(A,B), (A,C), (B,C)
	M2	Х			х	(A,D)
	M3		х		Х	(B,D)
	M4			X	Х	(C,D)
Scenario 2	M1		Х	Х	Х	(B,C), (B,D), (C,D)
	M2	x	Х			(A,B)
	M3	x		Х		(A,C)
Sc	M4	x			Х	(A,D)

ション ふゆ マ キャット マックシン

Illustrative example: a) More people have lived in three countries than expected from bilateral flows

► Baseline model:

Ranking for $freqABC \approx$ min(freqAB, freqAC, freqBC) $\times mean(freqAB, freqAC, freqBC)$

- Expected ranking for people who have lived in the 3 countries based on bilateral flows of Google+ users = # 682
- Actual ranking in Google+ data set = # 200

Illustrative example: b) Less people have lived in three countries than expected from bilateral flows

- Expected ranking for people who have lived in the 3 countries based on bilateral flows of Google+ users = # 12
- Actual ranking in Google+ data set = # 80
- Conditional on the bilateral flows, we would have expected more users to have lived in all the three countries

うして ふゆう ふほう ふほう ふしつ

Discussion

- Countries with similar bilateral flows may experience quite different dynamics as a migration system... Why?
- ▶ New types of data:
 - Large samples (important for rare phenomena like migrations)
 - Qualitatively different information (migration histories vs flows)
 - Push for new theories
- ▶ Limitations:
 - Google+ users are a non-representative sample
 - Data quality issues
- $\Rightarrow\,$ Combining traditional and new data sources is key